Refine Your Search

Topic

Author

Search Results

Technical Paper

3-D CFD Analysis of the Combustion Process in a DI Diesel Engine using a Flamelet Model

2000-03-06
2000-01-0662
A 3-dimensional numerical study has been conducted investigating the combustion process in a VW 1.9l TDI Diesel engine. Simulations were performed modeling the spray injection of a 5-hole Diesel injector in a pressure chamber. A graphical methodology was utilized to match the spray resulting from the widely used Discrete Droplet Spray model to pressure chamber spray images. Satisfactory agreement has been obtained regarding the simulated and experimental spray penetration and cone angles. Thereafter, the combustion process in the engine was simulated. Using engine measurements to initialize the combustion chamber conditions, the compression stroke, the spray injection and the combustion simulation was performed. The novel RTZF two-zone flamelet combustion model was used for the combustion simulation and was tested for partial load operating conditions. An objective analysis of the model is presented including the results of a numerical parameter study.
Technical Paper

A New Method to Assess the Summer Suitability of Car Seats

1993-03-01
930106
A new method has been designed to examine car seats by technical means only, whether they fit summer conditions or not. Test procedures start with the application of a carefully wetted cloth onto the seat to be examined. The test area is then covered by a temperature controlled, electrically heated solid body bloc. This simulates the body temperature and the seat pressure of a real seat user. During test periods of standard three hours, temperature and humidity is measured beneath the test device and in the surrounding air. As an effect of the water impulse the humidity increases under the body bloc. It has been proved that good summer suitability of a car seat is characterised by moderate amount and moderate duration of increased humidity readings. Poor suitability results in higher amount and longer duration of raised humidity. The method is shown to be useful to examine full scale car seats, child safety seats and single design characteristics of car seats as well.
Technical Paper

A PDF-Based Model for Full Cycle Simulation of Direct Injected Engines

2008-06-23
2008-01-1606
In one-dimensional engine simulation programs the simulation of engine performance is mostly done by parameter fitting in order to match simulations with experimental data. The extensive fitting procedure is especially needed for emissions formation - CO, HC, NO, soot - simulations. An alternative to this approach is, to calculate the emissions based on detailed kinetic models. This however demands that the in-cylinder combustion-flow interaction can be modeled accurately, and that the CPU time needed for the model is still acceptable. PDF based stochastic reactor models offer one possible solution. They usually introduce only one (time dependent) parameter - the mixing time - to model the influence of flow on the chemistry. They offer the prediction of the heat release, together with all emission formation, if the optimum mixing time is given.
Journal Article

Acoustic-Fluid-Structure Interaction (AFSI) in the Car Underbody

2022-06-15
2022-01-0938
The turbulent flow around vehicles causes high amplitude pressure fluctuations at the underbody, consisting of both hydromechanic and acoustic contributions. This induces vibrations in the underbody structures, which in turn may lead to sound transmission into the passenger compartment, especially at low frequencies. To study these phenomena we present a run time fully coupled acoustic-fluid-structure interaction framework expanding a validated hybrid CFD-CAA solver. The excited and vibrating underbody is resembled by an aluminium plate in the underbody of the SAE body which allows for sound transmission into the interior. Different excitation situations are generated by placing obstacles at the underbody upstream of the aluminium plate. For this setup we carry out a fully coupled simulation of flow, acoustics and vibration of the plate.
Journal Article

Analysis of Cycle-to-Cycle Variations of the Mixing Process in a Direct Injection Spark Ignition Engine Using Scale-Resolving Simulations

2016-11-16
2016-01-9048
Since the mechanisms leading to cyclic combustion variabilities in direct injection gasoline engines are still poorly understood, advanced computational studies are necessary to be able to predict, analyze and optimize the complete engine process from aerodynamics to mixing, ignition, combustion and heat transfer. In this work the Scale-Adaptive Simulation (SAS) turbulence model is used in combination with a parameterized lagrangian spray model for the purpose of predicting transient in-cylinder cold flow, injection and mixture formation in a gasoline engine. An existing CFD model based on FLUENT v15.0 [1] has been extended with a spray description using the FLUENT Discrete Phase Model (DPM). This article will first discuss the validation of the in-cylinder cold flow model using experimental data measured within an optically accessible engine by High Speed Particle Image Velocimetry (HS-PIV).
Technical Paper

Code Coupling, a New Approach to Enhance CFD Analysis of Engines

2000-03-06
2000-01-0660
A new method for the analysis of the gas flow in an internal combustion engine has been developed. It is based on the interactive coupling between commercially available three (STAR-CD) and one dimensional (PROMO) fluid dynamics codes. With this method the detailed transient flow distribution for any engine component of interest can be calculated taking into account the overall gas dynamic interaction with other engine components. The underlying physics and numerics are outlined. A description of the coupling procedure ensuring proper communication between the two computer codes is given. Also addressed is the averaging procedure adopted at the 3D boundaries, including the influence of the 1D/3D interface placement. A first application of this new method is presented, in which the gas flow in a turbo-charged DI-diesel-engine is simulated.
Technical Paper

Crank-Angle Resolved Temperature in SI Engines Measured by Emission-Absorption Spectroscopy

1999-10-25
1999-01-3542
Crank-angle resolved, gas temperatures are determined in the combustion chamber of a Volkswagen (VW) standard-production, port-injected SI engine. During idle, two different methods are applied: (1) a direct spectroscopic emission-absorption technique at a resonance line of potassium, seeded to the air stream to generate sufficient spectral absorptance (‘colouring’ technique), and (2) a more standard, indirect method in which temperatures are derived from pressure recordings using a two-zone thermodynamic model. Combustion temperatures obtained during idle with both the spectroscopic (1) and ‘two-zone’ (2) methods are in good agreement. In addition, the spectroscopic technique is extended to transient operating conditions where the ‘two-zone’ method is not applicable. Combustion temperatures measured during cold-start and abrupt load alteration are in good agreement with former investigations.
Technical Paper

Effect of HPDC Parameters on the Performance of Creep Resistant Alloys MRI153M and MRI230D

2005-04-11
2005-01-0334
The growing demand for the use of magnesium alloys in the production of automotive powertrain components led to the development of creep resistant diecasting alloys MRI153M and MRI230D. The present paper addresses the main high-pressure die casting parameters, which significantly affect the performance of components, produced of these new alloys. A systematic study was carried out in order to correlate die-casting parameters to the performance of new alloys. The results obtained clearly indicated that optimization of molten metal and die temperatures, injection profile parameters and lubrication mixtures allowed to improve the die castability and service properties of the new alloys and produce high performance components with intricate geometry. This was manifested by production of several practical demonstrators such as gearboxes, oil pans, oil pumps and crankcases.
Technical Paper

Exhaust Gas Aftertreatment of Volkswagen FSI Fuel Stratified Injection Engines

2002-03-04
2002-01-0346
For substantial reduction of fuel consumption of their vehicle fleet, Volkswagen AG has decided to develop spark-ignition engines with direct fuel injection. To launch this new engine concept with stratified lean operation mode while at the same time meeting the stringent EU IV emission standards, it was necessary to develop a suitable exhaust gas aftertreatment system. This was achieved as part of an intensive co-operation between Volkswagen AG and OMG, formerly dmc2 Degussa Metals Catalysts Cerdec AG. The paper describes the demands for exhaust gas aftertreatment due to lean burn operation. In addition the main development steps of the exhaust gas aftertreatment system for Volkswagen FSI engines and catalyst durability over vehicle lifetime are discussed. Focus is laid on the catalyst system design and coating variations. Volkswagen developed a new closed-loop emission control management system which uses NOx-sensor signals for the first time worldwide.
Technical Paper

Experimental Approach to Optimize Catalyst Flow Uniformity

2000-03-06
2000-01-0865
A uniform flow distribution at converter inlet is one of the fundamental requirements to meet high catalytic efficiency. Commonly used tools for optimization of the inlet flow distribution are flow measurements as well as CFD analysis. This paper puts emphasis on the experimental procedures and results. The interaction of flow measurements and CFD is outlined. The exhaust gas flow is transient, compressible and hot, making in-situ flow measurements very complex. On the other hand, to utilize the advantages of flow testing at steady-state and cold conditions the significance of these results has to be verified first. CFD analysis under different boundary conditions prove that - in a first approach - the flow situation can be regarded as a sequence of successive, steady-state situations. Using the Reynolds analogy a formula for the steady-state, cold test mass flow is derived, taking into account the cylinder displacement and the rated speed.
Technical Paper

Experimental Investigation of the Primary Spray Development of GDI Injectors for Different Nozzle Geometries

2015-04-14
2015-01-0911
The optimization of the mixture formation represents great potential to decrease fuel consumption and emissions of spark-ignition engines. The injector and the nozzle are of major importance in this concern. In order to adjust the nozzle geometry according to the requirements an understanding of the physical transactions in the fuel spray is essential. In particular, the primary spray break-up is still described inadequately due to the difficult accessibility with optical measuring instruments. This paper presents a methodology for the characterization of the nozzle-near spray development, which substantially influences the entire spray shape. Single hole injectors of the gasoline direct injection (GDI) with different nozzle hole geometries have been investigated in a high pressure chamber by using the MIE scattering technique. To examine the spray very close to the nozzle exit a long-distance microscope in combination with a Nd:YAG-laser was used.
Technical Paper

Experimental and Numerical Analysis of Pre-Chamber Combustion Systems for Lean Burn Gas Engines

2019-04-02
2019-01-0260
The current trend in automobiles is towards electrical vehicles, but for the most part these vehicles still require an internal combustion engine to provide additional range and flexibility. These engines are under stringent emissions regulations, in particular, for the reduction of CO2. Gas engines which run lean burn combustion systems provide a viable route to these emission reductions, however designing these engines to provide sustainable and controlled combustion under lean conditions at λ=2.0 is challenging. To address this challenge, it is possible to use a scavenged Pre-Chamber Ignition (PCI) system which can deliver favorable conditions for ignition close to the spark plug. The lean charge in the main combustion chamber is then ignited by flame jets emanating from the pre-chamber nozzles. Accurate prediction of flame kernel development and propagation is essential for the analysis of PCI systems.
Technical Paper

High Temperature Mg Alloys for Sand and Permanent Mold Casting Applications

2004-03-08
2004-01-0656
The need to reduce weight of large and heavy components used by the automotive and aerospace industries such as engine block, cylinder head cover and helicopter gearbox housing has led to the development of new Mg gravity casting alloys that provide adequate properties and cost effective solution. The new Mg gravity casting alloys are designed for high stressed components that operate at a temperature up to 300°C. These new alloys exhibit excellent mechanical properties and creep resistance in T-6 conditions. The present paper aims at introducing three new Mg gravity casting alloys designated MRI 201S, MRI 202S and MRI 203S, which were recently developed by the Magnesium Research Institute of DSM and VW. Apart from the excellent high temperature performance of these alloys, they provide adequate castability and dimension stability along with good weldability and corrosion resistance.
Journal Article

Improved Energy Management Using Engine Compartment Encapsulation and Grille Shutter Control

2012-04-16
2012-01-1203
A vehicle thermal management system is required to increase the operating efficiency of components, to transfer the heat efficiently and to reduce the energy required for the vehicle. Vehicle thermal management technologies, such as engine compartment encapsulation together with grille shutter control, enable energy efficiency improvements through utilizing waste heat in the engine compartment for heating powertrain components as well as cabin heating and reducing the aerodynamic drag . In this work, a significant effort is put on recovering waste heat from the engine compartment to provide additional efficiency to the components using a motor compartment insulation technique and grille shutter. The tests are accelerated and the cost is reduced using a co-simulation tool based on high resolution, complex thermal and kinematics models. The results are validated with experimental values measured in a thermal wind tunnel, which provided satisfactory accuracy.
Technical Paper

In Cylinder High Speed and Stroboscopic Video Observation of Spray Development in a DI Diesel Engine

1996-05-01
961206
For high-speed imaging a newly developed eight-fold CCD camera, which permits framing rates of up to one million pictures per second, was used to obtain pictures of the injected sprays during the operation of a diesel engine. For the particular case studied here the framing rate was set at 50,000 pictures per second. This rate was sufficient to resolve the temporal development of the sprays in the transparent version of the four-cylinder, in-line, 1.9 litre DI production diesel engine of Volkswagen. The advantage of the camera is that it needs no light pulses for illumination, but can operate with a continuous light source. Each of the CCD chips is arranged around a central eight face reflecting pyramid, which splits the light coming from the camera lens to each CCD chip. The chips can be shuttered freely (asynchronously) at programmable inter-frame spacings thus permitting operation with continuous illumination. In this particular case a 30 Watt halogen lamp was used.
Journal Article

In-Cylinder LIF Imaging, IR-Absorption Point Measurements, and a CFD Simulation to Evaluate Mixture Formation in a CNG-Fueled Engine

2018-04-03
2018-01-0633
Two optical techniques were developed and combined with a CFD simulation to obtain spatio-temporally resolved information on air/fuel mixing in the cylinder of a methane-fueled, fired, optically accessible engine. Laser-induced fluorescence (LIF) of anisole (methoxybenzene), vaporized in trace amounts into the gaseous fuel upstream of the injector, was captured by a two-camera system, providing one instantaneous image of the air/fuel ratio per cycle. Broadband infrared (IR) absorption by the methane fuel itself was measured in a small probe volume via a spark-plug integrated sensor, yielding time-resolved quasi-point information at kHz-rates. The simulation was based on the Reynolds-averaged Navier-Stokes (RANS) approach with the two-equation k-epsilon turbulence model in a finite volume discretization scheme and included the port-fuel injection event. Commercial CFD software was used to perform engine simulations close to the experimental conditions.
Technical Paper

In-Cylinder Mixture Formation Analysis with Spontaneous Raman Scattering Applied to a Mass-Production SI Engine

1997-02-24
970827
Mixture formation analysis in the combustion chamber of a slightly modified mass-production SI engine with port-fuel injection using nonintrusive laser measurement techniques is presented. Laser Raman scattering and planar laser-induced tracer fluorescence are employed to measure air-fuel ratio and residual gas content of the charge with and without spatial resolution. Single-cycle measurements as well as cycle-averaged measurements are performed. Engine operation parameters like load, speed, injection timing, spark timing, coolant temperature, and mean air-fuel ratio are changed to study whether the effects on mixture formation and engine performance can be resolved by the applied laser spectroscopic techniques. Mixture formation is also analyzed by measurement of the charge composition as a function of crank angle. Clear correlations of the charge composition data and engine operating conditions are seen.
Technical Paper

Investigation of Spray Formation of DI Gasoline Hollow-Cone Injectors Inside a Pressure Chamber and a Glass Ring Engine by Multiple Optical Techniques

1999-10-25
1999-01-3660
The paper describes detailed studies about the spray formation of a direct-injection high-pressure gasoline injector and the interaction of the droplets with the surrounding compressed air in pressure chamber experiments and inside an optically accessible research engine. Different optical techniques, like stroboscopic video technique, high-speed filming with flood-light illumination or with light-sheet illumination by a copper vapour laser, particle image velocimetry of the droplets, laser-induced fluorescence of the liquid phase, and spontaneous Raman spectroscopy for the measurement of the fuel/air ratio are used. From the recorded images spray characteristics such as spray penetration and spray cone angle are evaluated for different settings of the chamber pressure and temperature and for different rail pressures. The results show that all techniques are suitable to derive the quantities mentioned above.
Technical Paper

Investigation of an Innovative Combustion Process for High-Performance Engines and Its Impact on Emissions

2019-01-15
2019-01-0039
Over the past years, the question as to what may be the powertrain of the future has become ever more apparent. Aiming to improve upon a given technology, the internal combustion engine still offers a number of development paths in order to maintain its position in public and private mobility. In this study, an innovative combustion process is investigated with the goal to further approximate the ideal Otto cycle. Thus far, similar approaches such as Homogeneous Charge Compression Ignition (HCCI) shared the same objective yet were unable to be operated under high load conditions. Highly increased control efforts and excessive mechanical stress on the components are but a few examples of the drawbacks associated with HCCI. The approach employed in this work is the so-called Spark Assisted Compression Ignition (SACI) in combination with a pre-chamber spark plug, enabling short combustion durations even at high dilution levels.
X