Refine Your Search

Topic

Author

Search Results

Technical Paper

A High Resolution 3D Complete Engine Heat Balance Model

2015-09-06
2015-24-2533
The focus on engine thermal management is rapidly increasing due to the significant effect of heat losses on fuel consumption, engine performance and emissions. This work presents a time resolved, high resolution 3D engine heat balance model, including all relevant components. Notably, the model calculates the conjugated heat transfer between the solid engine components, the coolant and the oil. Both coolant and oil circuits are simultaneously resolved with a CFD solver in the same finite volume model as the entire engine solid parts. The model includes external convection and radiation. The necessary boundary conditions of the thermodynamic cycle (gas side) are mapped from a calibrated 1D gas exchange model of the same engine. The boundary conditions for the coolant and at the oil circuits are estimated with 1D models of the systems. The model is calibrated and verified with measurement data from the same engine as modeled.
Technical Paper

A Mild Hybrid SIDI Turbo Passenger Car Engine with Organic Rankine Cycle Waste Heat Recovery

2019-09-09
2019-24-0194
While striving for more fuel-efficient vehicles, all possible measures are considered to increase the efficiency of the combustion engine powertrain. 48V mild hybrid technology is one such measure, SIDI (Spark Ignited Direct Injection) engines with Miller technology are another, while recovering energy from the engine’s waste heat (WHR) is yet another option. In this paper, results will be published from an advanced engineering project at Volvo Cars including all of these components. An ethanol based Organic Rankine Cycle (ORC) WHR-system was successfully built around a 4-cylinder, 2.0 litre SIDI-engine, including 48V mild hybrid technology, with vehicle packaging considered. A dedicated control system was also developed for the ORC system including communication between it and the engine. The ORC system uses the engine exhaust as the heat source, for which a purpose-built evaporator was designed and built to fit in the vehicle tunnel.
Technical Paper

A Semiconductor Gas Sensor Array for the Detection of Gas Emissions from Interior Trim Materials in Automobiles

1998-02-23
980995
The principles of an electronic nose are described briefly. It is shown how a sensor array in combination with pattern recognition software can be used for quality control and classification of car interior trim materials. Anomalies such as bad smelling leather and carpet are shown as outliers. The results are consistent with GC-MS TVOC measurements as well as with data from a human sensory panel. More needs to be done, however, regarding the sensor stability in particular before the sensor array can be used for routine classification of the trim materials.
Technical Paper

A Strategy for Developing an Inclusive Load Case for Verification of Squeak and Rattle Noises in the Car Cabin

2021-08-31
2021-01-1088
Squeak and rattle (S&R) are nonstationary annoying and unwanted noises in the car cabin that result in considerable warranty costs for car manufacturers. Introduction of cars with remarkably lower background noises and the recent emphasis on electrification and autonomous driving further stress the need for producing squeak- and rattle-free cars. Automotive manufacturers use several road disturbances for physical evaluation and verification of S&R. The excitation signals collected from these road profiles are also employed in subsystem shaker rigs and virtual simulations that are gradually replacing physical complete vehicle test and verification. Considering the need for a shorter lead time and the introduction of optimisation loops, it is necessary to have efficient and inclusive excitation load cases for robust S&R evaluation.
Technical Paper

A Structure and Calibration Method for Data-Driven Modeling of NOX and Soot Emissions from a Diesel Engine

2012-04-16
2012-01-0355
The development and implementation of a new structure for data-driven models for NOX and soot emissions is described. The model structure is a linear regression model, where physically relevant input signals are used as regressors, and all the regression parameters are defined as grid-maps in the engine speed/injected fuel domain. The method of using grid-maps in the engine speed/injected fuel domain for all the regression parameters enables the models to be valid for changes in physical parameters that affect the emissions, without having to include these parameters as input signals to the models. This is possible for parameters that are dependent only on the engine speed and the amount of injected fuel. This means that models can handle changes for different parameters in the complete working range of the engine, without having to include all signals that actually effect the emissions into the models.
Journal Article

A Study on Acoustical Time-Domain Two-Ports Based on Digital Filters with Application to Automotive Air Intake Systems

2011-05-17
2011-01-1522
Analysis of pressure pulsations in ducts is an active research field within the automotive industry. The fluid dynamics and the wave transmission properties of internal combustion (IC) engine intake and exhaust systems contribute to the energy efficiency of the engines and are hence important for the final amount of CO₂ that is emitted from the vehicles. Sound waves, originating from the pressure pulses caused by the in- and outflow at the engine valves, are transmitted through the intake and exhaust system and are an important cause of noise pollution from road traffic at low speeds. Reliable prediction methods are of major importance to enable effective optimization of gas exchange systems. The use of nonlinear one-dimensional (1D) gas dynamics simulation software packages is widespread within the automotive industry. These time-domain codes are mainly used to predict engine performance parameters such as output torque and power but can also give estimates of radiated orifice noise.
Technical Paper

Accuracy in Flow Simulations of Climate Control - Part 2: The Passenger Compartment

1999-03-01
1999-01-1201
Computational fluid dynamics has been used to study the flow pattern in a Volvo S80 passenger compartment. The main purpose of this work is to secure a method for future use of CFD in developing climate control systems in cars. The effects of mesh resolution and mesh size were studied by varying the number of cells from 1 million to approximately 5 million. It was found that at least 2 million cells are needed to approach a mesh size independent solution. The other focus of this study was the outlet boundary conditions. Since a passenger compartment is not air tight, outlets were assumed to be around doors, through the floor, through the backseat, as well as the evacuation at the rear of the passenger compartment. It can be seen that the solution is only sensitive to drastic changes in the leakage.
Technical Paper

Accuracy in Flow Simulations of Climate Control-Part 1: The Air Distribution System

1999-03-01
1999-01-1200
Flow simulations of an air distribution system have been carried out using the CFD code FLUENT/UNS [1]. The purpose of this study is to validate this complex flow problem versus experimental data. Two modes of the climate system are investigated; the Ventilation mode and the Floor/Defroster mode. The complete geometrical model contains all ducts, central unit, heat exchangers, defroster and nozzles of the air distribution system. A high level of geometrical detailing in the mesh, consisting of 2.1 - 3.3 million cells, is used. The study shows that CFD has a potential to give reliable results, even for complex systems, like air distribution systems, if used in a controlled manner.
Technical Paper

Acoustic One-Dimensional Compressor Model for Integration in a Gas-Dynamic Code

2012-04-16
2012-01-0834
An acoustic one-dimensional compressor model has been developed. This model is based on compressor map information and it is able to predict how the pressure waves are transmitted and reflected by the compressor. This is later on necessary to predict radiated noise at the intake orifice. The fluid-dynamic behavior of the compressor has been reproduced by simplifying the real geometry in zero-dimensional and one-dimensional elements with acoustic purposes. These elements are responsible for attenuating or reflecting the pressure pulses generated by the engine. In order to compensate the effect of these elements in the mean flow variables, the model uses a corrected compressor map. Despite of the fact that the compressor model was developed originally as a part of the OpenWAM™ software, it can be exported to other commercial wave action models. An example is provided of exporting the described model to GT-Power™.
Journal Article

An Evaluation of Different Combustion Strategies for SI Engines in a Multi-Mode Combustion Engine

2008-04-14
2008-01-0426
Future pressures to reduce the fuel consumption of passenger cars may require the exploitation of alternative combustion strategies for gasoline engines to replace, or use in combination with the conventional stoichiometric spark ignition (SSI) strategy. Possible options include homogeneous lean charge spark ignition (HLCSI), stratified charge spark ignition (SCSI) and homogeneous charge compression ignition (HCCI), all of which are intended to reduce pumping and thermal losses. In the work presented here four different combustion strategies were evaluated using the same engine: SSI, HLCSI, SCSI and HCCI. HLCSI was achieved by early injection and operating the engine lean, close to its stability limits. SCSI was achieved using the spray-guided technique with a centrally placed multi-hole injector and spark-plug. HCCI was achieved using a negative valve overlap to trap hot residuals and thus generate auto-ignition temperatures at the end of the compression stroke.
Technical Paper

An Investigation of the Coupling Between the Passenger Compartment and the Trunk in a Sedan

2007-05-15
2007-01-2356
The low frequency acoustic response of the passenger compartment (cavity) in sedans is considered with respect to the coupling between the cavity and the trunk. Both acoustic (via holes in the parcel shelf or behind the backrest of the rear seat), and structural (via the parcel shelf itself, or the panel of the backrest) mechanisms are investigated by both test and CAE. It is found that the peaks in acoustic response of the cavity at low frequencies are due to both acoustic and structural phenomena. However, the acoustic ones can be effectively blocked by proper design of the trim. Recommendations concerning modeling of acoustic effects in sedans are formulated.
Technical Paper

Balancing Thermodynamic and Aerodynamic Attributes Through the Use of a Common CFD Model

2005-05-10
2005-01-2052
This paper describes how simultaneous numerical simulation of cooling performance and aerodynamic drag can be used to achieve attribute-balanced solutions. Traditionally at Volvo, evaluation of cooling performance and aerodynamics are done by separate teams using separate models and software. However, using this approach, any project changes can be evaluated in terms of their effect on cooling performance and drag from one single model. This enables the project to make decisions that are optimal in a more global perspective. If several proposals have similar levels of cooling performance, the proposal that yields the lowest overall drag can be chosen, thus reducing the fuel consumption of the vehicle. The first part of the paper discusses the prerequisites for the method in terms of boundary conditions, mesh and solution strategy. For the cooling performance part, the importance of high quality boundary conditions is reviewed.
Technical Paper

CFD-Analysis of Cycle Averaged Heat Flux and Engine Cooling in an IC-Engine

2005-04-11
2005-01-0200
It is demonstrated that the cycle averaged heat flux on the hot gas side of the cylinders can be obtained using in-cylinder CFD-analysis. Together with the heat transfer coefficient obtained from the coolant jacket CFD-analysis, a complete set of boundary conditions are made available exclusively based on simulations. The engine metal temperatures could then be predicted using FEA and the results are compared to an extensive set of measured data. Also 1-D codes are used to provide cooling circuit boundary conditions and gas exchange boundary condition for the CFD-models. The predicted temperature distribution in the engine is desirable for accurate and reliable prediction of knock, durability problems, bore distortion and valve seat distortion.
Technical Paper

Comparison Between CFD and PIV Measurements in a Passenger Compartment

2000-03-06
2000-01-0977
Numerical simulations of the flow inside a passenger compartment are compared with experimental data obtained from velocity field measurements using Particle Image Velocimetry (PIV). Comparisons are made in the front part of the passenger compartment with the air-distribution system operated in a ventilation mode. The sensitivty of the CFD-model to the boundary conditions was investigated and two different turbulence models were tested. Computations and experiments resulted in similar results for the overall flow field, however, rather large differences were found in the vertical spreading of the jet from the dashboard nozzle. The width of the jet was lower in the measurements than in the simulations. This difference is believed to be caused by the high diffusivity obtained when using a k-epsilon model in combination with an unstructured grid.
Technical Paper

Complete Engine Modeling Using CFD

2004-03-08
2004-01-0109
When developing gas exchange and combustion systems at Volvo Car Corporation, CFD (Computational Fluid Dynamics) is today a key tool. Three dimensional CFD is by tradition used to study one single component (e.g. manifolds and ports) at a time. Our experience is that this approach suffers from two main limitations; first that the boundary conditions (both upstream and downstream) are uncertain; and secondly that validation against experimental data is extremely difficult since any measured parameter will depend on the complete engine. Distribution of secondary gases and AFR (Air to Fuel ratio) are typical examples where traditional CFD methods fail. One proposed way to overcome these problems is to use 1D gas exchange models coupled with 3D CFD. The main problem with this approach is however the positioning and treatment of the boundaries between the models. Furthermore, the boundaries themselves will unconditionally cause disturbances in the pressure fields.
Technical Paper

Cycle to Cycle Variations: Their Influence on Cycle Resolved Gas Temperature and Unburned Hydrocarbons from a Camless Gasoline Compression Ignition Engine

2002-03-04
2002-01-0110
A single cylinder, naturally aspirated, four-stroke and camless gasoline engine was operated in gasoline compression ignition mode or otherwise known as homogeneous charge compression ignition (HCCI) mode. The valve timing could be adjusted during engine operation, which made it possible to operate the engine on HCCI combustion in the part-load regime of a 5-cylinder 2.4 liter engine. Cycle to cycle variation in cylinder pressure is caused by the shifts in the auto-ignition timing of the air-fuel mixture. These variations during HCCI combustion were found to, be predictable to some extent, in the sense that an early phased combustion follows a later phased one and vice versa. When the engine was operated in spark ignition mode, a late combustion was correlated with a high gas temperature. No such correlation was found when the engine was operated in HCCI mode.
Technical Paper

Cylinder-to-Cylinder and Cycle-to-Cycle Variations at HCCI Operation With Trapped Residuals

2005-04-11
2005-01-0130
A naturally aspirated in-line six-cylinder 2.9-litre Volvo engine is operated in Homogeneous Charge Compression Ignition (HCCI) mode, using camshafts with low lift and short duration generating negative valve overlap. Standard port fuel injection is used and pistons and cylinder head are unchanged from the automotive application. HCCI through negative valve overlap is recognized as one of the possible implementation strategies of HCCI closest to production. It is important to gain knowledge of the constraints and limits on the possible operating region. In this work, the emphasis is on investigating how cycle-to-cycle and cylinder-to-cylinder deviations limit the operating region, how these effects change in different parts of the operating region and how they can be controlled. At low load the cycle-to-cycle phenomena cause periodic behavior in combustion timing; together with cylinder deviations this is found responsible for decreasing the operating regime.
Technical Paper

Demonstrating a SI-HCCI-SI Mode Change on a Volvo 5-Cylinder Electronic Valve Control Engine

2003-03-03
2003-01-0753
Operating an engine in homogeneous charge compression ignition (HCCI) mode requires the air fuel mixture to be very lean or highly diluted with residuals. This is in order to slow the kinetics down and to avoid too rapid heat release. Consequently, the operational window for the engine in HCCI mode is not the same as for the engine operating in spark ignited (SI) mode. Homogeneous charge compression ignition engine mode, in this study, is accomplished by trapping residual mass using variable valve timing. With the residual trapping method, the engine cannot be started in HCCI mode and due to the dilution, the engine in HCCI mode can only be operated in the part - load regime. Hence, a mode change between spark ignited and HCCI modes, and vice versa is required. This study reports the development of a mode change strategy for a single cylinder camless engine, and its successful implementation in a camless multi cylinder engine.
Technical Paper

Demonstration of Two-Dimensional Temperature Characterization of Valves and Transparent Piston in a GDI Optical Engine

2004-03-08
2004-01-0609
Thermographic phosphors thermometry was used to measure engine valves and transparent piston temperatures in two dimensions as well point wise of a running, optically accessible, gasoline direct injection engine. The engine, fueled with isooctane, was operated in continuous and skip-fire mode at 1200 and 2000 rpm. A calibration of the phosphorescence lifetime and spectral properties against temperature allowed temperature measurements between 25 and 600°C. Results from the measurements show the potential of the technique for two-dimensional mapping of engine walls, valves and piston temperatures inside the cylinder.
Technical Paper

Detailed Heat Release Analyses with Regard to Combustion of RME and Oxygenated Fuels in an HSDI Diesel Engine

2007-04-16
2007-01-0627
Experiments on a modern DI Diesel engine were carried out: The engine was fuelled with standard Diesel fuel, RME and a mixture of 85% standard Diesel fuel, 5% RME and 10% higher alcohols under low load conditions (4 bar IMEP). During these experiments, different external EGR levels were applied while the injection timing was chosen in a way to keep the location of 50% heat release constant. Emission analysis results were in accordance with widely known correlations: Increasing EGR rates lowered NOx emissions. This is explained by a decrease of global air-fuel ratio entailing longer ignition delay. Local gas-fuel ratio increases during ignition delay and local combustion temperature is lowered. Exhaust gas analysis indicated further a strong increase of CO, PM and unburned HC emissions at high EGR levels. This resulted in lower combustion efficiency. PM emissions however, decreased above 50% EGR which was also in accordance with previously reported results.
X