Refine Your Search

Topic

Author

Search Results

Technical Paper

3-D Diesel Spray Simulations Using a New Detailed Chemistry Turbulent Combustion Model

2000-06-19
2000-01-1891
Until recently, the application of the detailed chemistry approach as a predictive tool for engine modeling has been sort of a “taboo” for different reasons, mainly because of an exaggerated rigor to the chemistry/turbulence interaction modeling. In terms of this ideology, if the interaction cannot be simulated properly, the detailed chemistry approach makes no sense. The novelty of the proposed methodology is the coupling of a generalized partially stirred reactor, PaSR, model with the high efficiency numerics to treat detailed oxidation kinetics of hydrocarbon fuels. In terms of this approach, chemical processes are assumed to proceed in two successive steps: the reaction follows after the micro-mixing is completed on a sub-grid scale.
Technical Paper

A Catalytic NOX After-Treatment System for Heavy-Duty Trucks Using Diesel Fuel as Reducing Agent

1999-10-25
1999-01-3563
An advanced catalytic exhaust after-treatment system addresses the problem of NOX emissions from heavy-duty diesel trucks, relying on real-time catalyst modelling. The system consists of de-NOX catalysts, a device for injection of a reducing agent (diesel fuel) upstream the catalysts, and computer programmes to control the injection of the reducing agent and to model the engine and catalysts in real time. Experiments with 5 different air-assisted injectors were performed to determine the effect of injector design on the distribution of the injected diesel in the exhaust gas stream. A two-injector set-up was investigated to determine whether system efficiency could be increased without increasing the amount of catalyst or the amount of reducing agent necessary for the desired outcome. The results were verified by performing European standard transient cycle tests as well as stationary tests.
Technical Paper

A Novel Concept for Combined Hydrogen Production and Power Generation

2009-06-15
2009-01-1946
A novel concept of combined hydrogen production and power generation system based on the combustion of aluminum in water is explored. The energy conversion system proposed is potentially able to provide four different energy sources, such us pressurized hydrogen, high temperature steam, heat, and work at the crankshaft on demand, as well as to fully comply with the environment sustainability requirements. Once aluminum oxide layer is removed, the pure aluminum can react with water producing alumina and hydrogen while releasing a significant amount of energy. Thus, the hydrogen can be stored for further use and the steam can be employed for energy generation or work production in a supplementary power system. The process is proved to be self-sustained and to provide a remarkable amount of energy available as work or hydrogen.
Technical Paper

A Numerical and Experimental Study of Diesel Fuel Sprays Impinging on a Temperature Controlled Wall

2006-10-16
2006-01-3333
Both spray-wall and spray-spray interactions in direct injection diesel engines have been found to influence the rate of heat release and the formation of emissions. Simulations of these phenomena for diesel sprays need to be validated, and an issue is investigating what kind of fuels can be used in both experiments and spray calculations. The objective of this work is to compare numerical simulations with experimental data of sprays impinging on a temperature controlled wall with respect to spray characteristics and heat transfer. The numerical simulations were made using the STAR-CD and KIVA-3V codes. The CFD simulations accounted for the actual spray chamber geometry and operating conditions used in the experiments. Particular attention was paid to the fuel used for the simulations.
Technical Paper

A Study of the Influence of Nozzle Orifice Geometries on Fuel Evaporation using Laser-Induced Exciplex Fluorescence

2003-05-19
2003-01-1836
Projected stringent emissions legislation will make tough demands on engine development. For diesel engines, in which combustion and emissions formation are governed by the spray formation and mixing processes, fuel injection plays a major role in the future development of cleaner engines. It is therefore important to study the fundamental features of the fuel injection process. In an engine the fuel is injected at high pressure into a pressurized and hot environment of air, which causes droplet formation and fuel evaporation. The injected fuel then forms a gaseous phase surrounding the liquid phase. The amount of evaporated fuel in relation to the total amount of injected fuel is of importance for engine performance, i.e. ignition delay and mixing rate. In this paper, the fraction of evaporated fuel was determined for sprays, using different orifice diameters ranging from 0.100 mm up to 0.227 mm, with the aid of a high-pressure spray chamber.
Technical Paper

Advanced Predictive Diesel Combustion Simulation Using Turbulence Model and Stochastic Reactor Model

2017-03-28
2017-01-0516
Today numerical models are a major part of the diesel engine development. They are applied during several stages of the development process to perform extensive parameter studies and to investigate flow and combustion phenomena in detail. The models are divided by complexity and computational costs since one has to decide what the best choice for the task is. 0D models are suitable for problems with large parameter spaces and multiple operating points, e.g. engine map simulation and parameter sweeps. Therefore, it is necessary to incorporate physical models to improve the predictive capability of these models. This work focuses on turbulence and mixing modeling within a 0D direct injection stochastic reactor model. The model is based on a probability density function approach and incorporates submodels for direct fuel injection, vaporization, heat transfer, turbulent mixing and detailed chemistry.
Technical Paper

Body and Component Accuracy in Assembly Systems

1998-09-29
982269
To give the customer an immediate impression of quality several of criteria must be fulfilled such as styling, paint finish and fitting of outer panels/closures. Therefore, higher demands on geometrical quality e.g. stability for both exterior and interior are needed. The structural part of the car body is the key element for success. Beside the visual impression, lack of noise and vibrations during driving can convince a potential buyer to become an actual customer. To achieve this, car manufacturers have to draw up an overall strategy in combination with proper working methods to be able to guarantee a stable geometrical output throughout the entire development process and during series production over the lifetime of the vehicle. On a simultaneous engineering basis, the OEM, the system/component- and the process suppliers (for the industrial system from press shop to final assembly) have to adopt a common measurement strategy.
Journal Article

CFD-Based Optimization of a Diesel-fueled Free Piston Engine Prototype for Conventional and HCCI Combustion

2008-10-06
2008-01-2423
This paper presents results of a parametric CFD modeling study of a prototype Free Piston Engine (FPE), designed for application in a series hybrid electric vehicle. Since the piston motion is governed by Newton's second law, accounting for the forces acting on the piston/translator, i.e. friction forces, electrical forces, and in-cylinder gas forces, having a high-level control system is vital. The control system changes the electrical force applied during the stroke, thus obtaining the desired compression ratio. Identical control algorithms were implemented in a MATLAB/SIMULINK model to those applied in the prototype engine. The ignition delay and heat release data used in the MATLAB/SIMULINK model are predicted by the KIVA-3V CFD code which incorporates detailed chemical kinetics (305 reactions among 70 species).
Technical Paper

Characterization of Gaseous and Particle Emissions of a Direct Injection Hydrogen Engine at Various Operating Conditions

2023-09-29
2023-32-0042
This paper investigates the gaseous and particulate emissions of a hydrogen powered direct injection spark ignition engine. Experiments were performed over different engine speeds and loads and with varying air- fuel ratio, start of injection and intake manifold pressure. An IAG FTIR system was used to detect and measure a variety of gaseous emissions, which include standard emissions such as NOX and unburned hydrocarbons as well as some non-standard emissions such as formaldehyde, formic acid, and ammonia. The particle number concentration and size distribution were measured using a DMS 500 fast particle analyzer from Cambustion. Particle composition was investigated using ICP analysis as well as a Sunset OC/EC analyzer to determine the soot content and the presence of any unburned engine oil. The results show that NOX emissions range between 0.1 g/kWh for a λ of 2.5 and 10 g/kWh λ of 1.5.
Technical Paper

Combustion and Emissions in a Light-Duty Diesel Engine Using Diesel-Water Emulsion and Diesel-Ethanol Blends

2009-11-02
2009-01-2695
The purpose of the investigation presented here was to compare the effects of fuel composition on combustion parameters, emissions and fuel consumption in engine tests and simulations with five fuels: a Diesel-water emulsion, a Diesel-ethanol blend, a Diesel-ethanol blend with EHN (cetane number improver), a Fischer-Tropsch Diesel and an ultra-low sulfur content Diesel. The engine used in the experiments was a light duty, single cylinder, direct injection, common rail Diesel engine equipped with a cylinder head and piston from a Volvo NED5 engine. In tests with each fuel the engine was operated at two load points (3 bar IMEP and 10 bar IMEP), and a pilot-main fuel injection strategy was applied under both load conditions. Data were also obtained from 3-D CFD simulations, using the KIVA code, to compare to the experimental results and to further analyze the effects of water and ethanol on combustion.
Video

Cooling Airflow System Modeling in CFD Using Assumption of Stationary Flow

2011-11-29
Battery Electric Vehicles and Extended Range Electric Vehicles, like the Chevrolet Volt, can use electrical energy from the Grid to meet the majority of a driver�s transportation needs. This has the positive societal effects of displace petroleum consumption and associated pollutants from combustion on a well to wheels basis, as well as reduced energy costs for the driver. CO2 may also be lower, but this depends upon the nature of the grid energy generation. There is a mix of sources � coal-fired, gas -fired, nuclear or renewables, like hydro, solar, wind or biomass for grid electrical energy. This mix changes by region, and also on the weather and time of day. By monitoring the grid mix and communicating it to drivers (or to their vehicles) in real-time, electrically driven vehicles may be recharged to take advantage of the lowest CO2, and potentially lower cost charging opportunities.
Technical Paper

Cylinder-to-Cylinder and Cycle-to-Cycle Variations at HCCI Operation With Trapped Residuals

2005-04-11
2005-01-0130
A naturally aspirated in-line six-cylinder 2.9-litre Volvo engine is operated in Homogeneous Charge Compression Ignition (HCCI) mode, using camshafts with low lift and short duration generating negative valve overlap. Standard port fuel injection is used and pistons and cylinder head are unchanged from the automotive application. HCCI through negative valve overlap is recognized as one of the possible implementation strategies of HCCI closest to production. It is important to gain knowledge of the constraints and limits on the possible operating region. In this work, the emphasis is on investigating how cycle-to-cycle and cylinder-to-cylinder deviations limit the operating region, how these effects change in different parts of the operating region and how they can be controlled. At low load the cycle-to-cycle phenomena cause periodic behavior in combustion timing; together with cylinder deviations this is found responsible for decreasing the operating regime.
Technical Paper

Detailed Heat Release Analyses with Regard to Combustion of RME and Oxygenated Fuels in an HSDI Diesel Engine

2007-04-16
2007-01-0627
Experiments on a modern DI Diesel engine were carried out: The engine was fuelled with standard Diesel fuel, RME and a mixture of 85% standard Diesel fuel, 5% RME and 10% higher alcohols under low load conditions (4 bar IMEP). During these experiments, different external EGR levels were applied while the injection timing was chosen in a way to keep the location of 50% heat release constant. Emission analysis results were in accordance with widely known correlations: Increasing EGR rates lowered NOx emissions. This is explained by a decrease of global air-fuel ratio entailing longer ignition delay. Local gas-fuel ratio increases during ignition delay and local combustion temperature is lowered. Exhaust gas analysis indicated further a strong increase of CO, PM and unburned HC emissions at high EGR levels. This resulted in lower combustion efficiency. PM emissions however, decreased above 50% EGR which was also in accordance with previously reported results.
Technical Paper

Dual Fuel Methanol and Diesel Direct Injection HD Single Cylinder Engine Tests

2018-04-03
2018-01-0259
Laws concerning emissions from heavy duty (HD) internal combustion engines are becoming increasingly stringent. New engine technologies are needed to satisfy these new requirements and to reduce fossil fuel dependency. One way to achieve both objectives can be to partially replace fossil fuels with alternatives that are sustainable with respect to emissions of greenhouse gases, particulates and nitrogen oxides (NOx). A suitable candidate is methanol. The aim of the study presented here was to investigate the possible advantages of combusting methanol in a heavy duty Diesel engine. Those are, among others, lower particulate emissions and thereby bypassing the NOx-soot trade-off. Because of methanol’s poor auto-ignition properties, Diesel was used as an igniting sources and both fuels were separately direct injected. Therefore, two separate standard common rail Diesel injection systems were used together with a newly designed cylinder head and adapted injection nozzles.
Technical Paper

Effect of Ultra-High Injection Pressure on Diesel Ignition and Flame under High-Boost Conditions

2008-06-23
2008-01-1603
In this work, we conducted three-dimensional numerical simulations to investigate the effect of ultra-high injection pressure on diesel ignition and flame under high-boost and medium-load conditions. Three injection cases employed in experiments with a multi-cylinder Volvo D12 engine were applied for validation. The simulations were performed using the KIVA-3V code, with a Kelvin-Helmholz/Rayleigh-Taylor (KH/RT) spray breakup model and a diesel surrogate mechanism involving 83 species and 445 reactions. A range of higher injection pressure levels were projected and the injection rates estimated for the current study. Three different rate shapes of injection were projected and investigated as well. All the projected injection events start at top dead center (TDC). Computations demonstrate that high-pressure injection strongly affects engine ignition and combustion.
Technical Paper

Experimental Investigation of Methane Direct Injection with Stratified Charge Combustion in Optical SI Single Cylinder Engine

2016-04-05
2016-01-0797
This paper assesses methane low pressure direct injection with stratified charge in a SI engine to highlight its potential and downsides. Experiments were carried out in a spark ignited single cylinder optical engine with stratified, homogeneous lean and stoichiometric operational mode, with focus on stratified mode. A dual coil ignition system was used in stratified mode in order to achieve sufficient combustion stability. The fuel injection pressure for the methane was 18 bar. Results show that stratified combustion with methane spark ignited direct injection is possible at 18 bar fuel pressure and that the indicated specific fuel consumption in stratified mode was 28% lower compared to the stoichiometric mode. Combustion and emission spectrums during the combustion process were captured with two high-speed video cameras. Combustion images, cylinder pressure data and heat release analysis showed that there are fairly high cycle-to-cycle variations in the combustion.
Technical Paper

Experimental Investigation of Soot in a Spray-Guided Single Cylinder GDI Engine Operating in a Stratified Mode

2013-09-08
2013-24-0052
Forthcoming reductions in legal limits for emissions of particle matter (PM) from direct injection engines have increased the need for understanding particle distributions in the engines and the factors affecting them. Therefore, in the presented study the influence on PM-emissions of potentially important factors (fuel injection pressure, load, speed and 50% mass fraction burned phasing) on particle mass, number and size distributions were experimentally investigated. The experimental system was a spray-guided, direct injection, single-cylinder research engine operated in stratified charge mode (using gasoline with 10% ethanol as fuel), under five load and speed settings that are appropriate for stratified combustion. The particle distributions obtained from operating the engine in homogeneous combustion and stratified combustion modes were also compared.
Technical Paper

Fuel Flow Impingement Measurements on Multi-Orifice Diesel Nozzles

2006-04-03
2006-01-1552
The injection process plays an important role in Diesel engines in terms of future emission legislations. Higher injection pressures and multiple injection events every cycle are a reality. To be able to understand how the fuel injection process can be further improved studies are needed on how higher pressure, multiple injections and multi orifice nozzles affect the overall process. The objective of this study was to further develop a measurement technique to determine injection rates and discharge coefficient for multi orifice nozzles. The technique used is based on measuring the instantaneous force of a fuel jet for a non-stationary injection process. The technique is applicable for multi orifice nozzles at high injection pressures. Both single and multiple injections can be resolved.
Technical Paper

Galvanic Corrosion of Die Cast Magnesium Exposed on Vehicles and in Accelerated Laboratory Tests

2006-04-03
2006-01-0255
Galvanic corrosion between die cast AZ91D and AM60B and different fastener systems has been evaluated by exposure on trucks and in accelerated laboratory tests. The exposure time on the trucks was 3 years, corresponding to a mileage of about 300000 km. Samples were retracted and evaluated after 1 and 2 years exposure. Similar samples were also exposed to the Volvo Indoor Corrosion Test and the General Motors GM9540P-cycle B test. The correlation between the field data and the laboratory tests was evaluated, as was the sharp difference in the performance of the fastener systems in the two accelerated laboratory tests.
Technical Paper

Inertia Collection Applied to Vehicle Emissions

1989-09-01
892092
The INCOLL or INertia COLLection system described in this paper, should meet the requirements for a short transient test, without using any chassis dynamometer. To prove this point not only the background of its principles are described, but also results from its application both to S I engines with and without catalytic converters and to truck diesel engines. Special interest has been devoted to the oxygen sensor and converter efficiency and their response both during warm up and under transient conditions. The simplification of the analyzing equipment and the direct interpretation of the results, have been dealt with, as well as the repeativity of the results achieved. The INCOLL test may also have a potential use as quality test at the end of the production line and as a tool for reliability development as well as research and development within the field. The cost for an INCOLL test is estimated to be around one (1) percent of a normal FTP certification procedure.
X