Refine Your Search

Topic

Author

Search Results

Journal Article

A Framework for Collaborative Robot (CoBot) Integration in Advanced Manufacturing Systems

2016-04-05
2016-01-0337
Contemporary manufacturing systems are still evolving. The system elements, layouts, and integration methods are changing continuously, and ‘collaborative robots’ (CoBots) are now being considered as practical industrial solutions. CoBots, unlike traditional CoBots, are safe and flexible enough to work with humans. Although CoBots have the potential to become standard in production systems, there is no strong foundation for systems design and development. The focus of this research is to provide a foundation and four tier framework to facilitate the design, development and integration of CoBots. The framework consists of the system level, work-cell level, machine level, and worker level. Sixty-five percent of traditional robots are installed in the automobile industry and it takes 200 hours to program (and reprogram) them.
Technical Paper

A Simple Linear Approach for Transient Fuel Control

2003-03-03
2003-01-0360
Significant A/F ratio excursion may occur during some engine transient operations, especially for transient periods of throttle tip in or tip out. A/F ratio excursion results in excessive emissions, extra fuel consumption, driveability deterioration and three-way-catalyst (TWC) efficiency drop. Simple two-parameter (X, τ) wall wetting models have traditionally been used to describe this transient A/F ratio excursion phenomenon. The transient fuel control techniques are utilized for this model to be applicable across vehicles, engines, fuel types and ambient conditions, so as to compensate for the A/F ratio excursion with the extra compensation fuel. More complicated model structures must be further expanded and model dependence on various environment conditions must be established to achieve a precise model. In this paper, a simple linear approach is proposed for transient fuel control, using least squares estimation.
Technical Paper

A Unified Approach to Solder Joint Life Prediction

2000-03-06
2000-01-0454
A unified approach has been developed and applied to solder joint life prediction in this paper, which indicates a breakthrough for solder joint reliability simulation. It includes the material characterization of solder alloys, the testing of solder joint specimens, a unified viscoplastic constitutive framework with damage evolution, numerical algorithm development and implementation, and experimental validation. The emphasis of this report focuses on the algorithm development and experimental verification of proposed viscoplasticity with damage evolution.
Technical Paper

Advanced Low Temperature Combustion (ALTC): Diesel Engine Performance, Fuel Economy and Emissions

2008-04-14
2008-01-0652
The objective of this work is to develop a strategy to reduce the penalties in the diesel engine performance, fuel economy and HC and CO emissions, associated with the operation in the low temperature combustion regime. Experiments were conducted on a research high speed, single cylinder, 4-valve, small-bore direct injection diesel engine equipped with a common rail injection system under simulated turbocharged conditions, at IMEP = 3 bar and engine speed = 1500 rpm. EGR rates were varied over a wide range to cover engine operation from the conventional to the LTC regime, up to the misfiring point. The injection pressure was varied from 600 bar to 1200 bar. Injection timing was adjusted to cover three different LPPCs (Location of the Peak rate of heat release due to the Premixed Combustion fraction) at 10.5° aTDC, 5 aTDC and 2 aTDC. The swirl ratio was varied from 1.44 to 7.12. Four steps are taken to move from LTC to ALTC.
Technical Paper

Advancement and Validation of a Plug-In Hybrid Electric Vehicle Plant Model

2016-04-05
2016-01-1247
The objective of the research into modeling and simulation was to provide an improvement to the Wayne State EcoCAR 2 team’s math-based modeling and simulation tools for hybrid electric vehicle powertrain analysis, with a goal of improving the simulation results to be less than 10% error to experimental data. The team used the modeling and simulation tools for evaluating different outcomes based on hybrid powertrain architecture changes (hardware), and controls code development and testing (software). The first step was model validation to experimental data, as the plant models had not yet been validated. This paper includes the results of the team’s work in the U.S. Department of Energy’s EcoCAR 2 Advanced vehicle Technical Competition for university student teams to create and test a plug-in hybrid electric vehicle for reducing petroleum oil consumption, pollutant emissions, and Green House Gas (GHG) emissions.
Technical Paper

An Analysis of Regulated and Unregulated Emissions in an HSDI Diesel Engine under the LTC Regime

2007-04-16
2007-01-0905
Several mechanisms are discussed to understand the formation of both regulated and unregulated emissions in a high speed, direct injection, single cylinder diesel engine using low sulphur diesel fuel. Experiments were conducted over a wide range of injection pressures, EGR rates, injection timings and swirl ratios. The regulated emissions were measured by the standard emission equipment. Unregulated emissions such as aldehydes and ketones were measured by high pressure liquid chromatography and hydrocarbon speciation by gas chromatography. Particulate mass was measured with a Tapered Element Oscillating Microbalance (TEOM). Analysis was made of the sources of different emission species and their relationship with the combustion process under the different operating conditions. Special attention is given to the low temperature combustion (LTC) regime which is known to reduce both NOx and soot. However the HC, CO and unregulated emissions increased at a higher rate.
Technical Paper

An Experimental Investigation of Spray Transfer Processes in an Electrostatic Rotating Bell Applicator

1998-09-29
982290
A better understanding is needed of the electrostatic rotating bell (ESRB) application of metallic basecoat paint to automobile exteriors in order to exploit their high transfer efficiency without compromising the coating quality. This paper presents the initial results from experimental investigation of sprays from an ESRB which is designed to apply water-borne paint. Water was used as paint surrogate for simplicity. The atomization and transport regions of the spray were investigated using laser light sheet visualizations and phase Doppler particle analyzer (PDPA). The experiments were conducted at varying levels of the three important operating parameters: liquid flow rate, shaping-air flow rate, and bellcup rotational speed. The results show that bellcup speed dominates atomization, but liquid and shaping-air flow rate settings significantly influence the spray structure. The visualization images showed that the atomization occurs in ligament breakup regime.
Technical Paper

An Experimental Investigation on Aldehyde and Methane Emissions from Hydrous Ethanol and Gasoline Fueled SI Engine

2020-09-15
2020-01-2047
Use of ethanol as gasoline replacement can contribute to the reduction of nitrogen oxide (NOx) and carbon oxide (CO) emissions. Depending on ethanol production, significant reduction of greenhouse-gas emissions is possible. Concentration of certain species, such as unburned ethanol and acetaldehyde in the engine-out emissions are known to rise when ratio of ethanol to gasoline increases in the fuel. This research explores on hydrous ethanol fueled port-fuel injection (PFI) spark ignition (SI) engine emissions that contribute to photochemical formation of ozone, or so-called ozone precursors and the precursor of peroxyacetyl nitrates (PANs). The results are compared to engine operation on gasoline. Concentration obtained by FTIR gas analyzer, and mass-specific emissions of formaldehyde (HCHO), acetaldehyde (MeCHO) and methane (CH4) under two engine speed, four load and two spark advance settings are analyzed and presented.
Technical Paper

Autoignition and Combustion of ULSD and JP8 during Cold Starting of a High Speed Diesel Engine

2017-03-28
2017-01-0797
Cold starting problems of diesel engines are caused mainly by the failure of the auto-ignition process or the subsequent combustion of the rest of the charge. The problems include long cranking periods and combustion instability leading to an increase in fuel consumption in addition to the emission of undesirable unburned hydrocarbons which appear in the exhaust as white smoke. The major cause of these problems is the low temperature and pressure of the charge near the end of the compression stroke and/or the poor ignition quality of the fuel. This paper presents the results of an experimental investigation of cold starting of a high speed diesel engine with ULSD (Ultra Low Sulphur Diesel) and JP8 (Jet Propulsion) fuels at ambient temperature (25°C). A detailed analysis is made of the autoignition and combustion of the two fuels in the first few cycles in the cold start transient. In addition, a comparison is made between these processes for the two fuels during idle operation.
Technical Paper

Automotive Hybrid System Optimization Using Dynamic Programming

2003-03-03
2003-01-0847
An automotive powertrain system consists of several interactive and linked nonlinear systems. This research focuses on the coordination of Gasoline Direct Injection (GDI) engine, transmission and emission aftertreatment systems. The goal is to design an optimal control strategy for driving performance, emissions (HC, CO, NOX), fuel economy and smoothness when switching engine mode and when shifting gears, under both discrete and continuous limitations. A multivariable control strategy is used to compromise among all powertrain subsystems to achieve optimal overall performance. A nonlinear discrete dynamic programming approach is proposed for hybrid system optimization. The complex multivariable automotive control problem is then simplified into an optimization problem. The feasibility of automotive hybrid control via the discrete dynamic programming approach is demonstrated by results from many numerical simulations under different operating conditions.
Technical Paper

Characteristics of Direct Injection Gasoline Spray Wall Impingement at Elevated Temperature Conditions

1999-10-25
1999-01-3662
The direct injection gasoline spray-wall interaction was characterized inside a heated pressurized chamber using various visualization techniques, including high-speed laser-sheet macroscopic and microscopic movies up to 25,000 frames per second, shadowgraph, and doublespark particle image velocimetry. Two hollow cone high-pressure swirl injectors having different cone angles were used to inject gasoline onto a heated plate at two different impingement angles. Based on the visualization results, the overall transient spray impingement structure, fuel film formation, and preliminary droplet size and velocity were analyzed. The results show that upward spray vortex inside the spray is more obvious at elevated temperature condition, particularly for the wide-cone-angle injector, due to the vaporization of small droplets and decreased air density. Film build-up on the surface is clearly observed at both ambient and elevated temperature, especially for narrow cone spray.
Journal Article

Cognitive Distraction While Driving: A Critical Review of Definitions and Prevalence in Crashes

2012-04-16
2012-01-0967
There is little agreement in the field of driving safety as to how to define cognitive distraction, much less how to measure it. Without a definition and metric, it is impossible to make scientific and engineering progress on determining the extent to which cognitive distraction causes crashes, and ways to mitigate it if it does. We show here that different studies are inconsistent in their definitions of cognitive distraction. For example, some definitions do not include cellular conversation, while others do. Some definitions confound cognitive distraction with visual distraction, or cognitive distraction with cognitive workload. Other studies define cognitive distraction in terms of a state of the driver, and others in terms of tasks that may distract the driver. It is little wonder that some studies find that cognitive distraction is a negligible factor in causing crashes, while others assert that cognitive distraction causes more crashes than drunk driving.
Technical Paper

Combustion and Emissions Characteristics of JP-8 Blends and ULSD #2 with Similar CN in a Direct Injection Naturally Aspirated Compression Engine

2013-04-08
2013-01-1682
"The Single Fuel Forward Policy" legislation enacted in the United States mandates that deployed U.S. military ground vehicles must be operable with aviation fuel (JP-8). This substitution of JP-8 for diesel raises concerns about the compatibility of this fuel with existing reciprocating piston engine systems. This study investigates the combustion, emissions, and performance characteristics of blends of JP-8 and Ultra Low Sulfur Diesel (ULSD) fuels with similar cetane numbers (CN), 48 (JP-8) and 47(ULSD), respectively, in a direct injection (DI) compression ignition engine over the load range of 3-8 bar imep at 1400 rpm. The results showed that JP-8 blends and ULSD had ignition delays ranging from approximately 1.0-1.4 ms and an average combustion duration time in the range of 47-65 CAD. Cylinder maximum heat flux values were found to be between 2.0 and 4.4 MW/m₂, with radiation flux increasing much faster than convection flux while increasing the imep.
Journal Article

Comparison of In-Cylinder Soot Evolution in an Optically Accessible Engine Fueled with JP-8 and ULSD

2012-04-16
2012-01-1315
Due to the single fuel concept implemented by the US military, the soot production of diesel engines fueled with JP-8 has important implications for military vehicle visual signature and survivability. This work compares in-cylinder soot formation and oxidation of JP-8 and ULSD in a small-bore, optical diesel engine. Experimental engine-out soot emission measurements are compared to crank-angle resolved two-color measurements of soot temperature and optical thickness, KL. A 3-D chemical kinetic-coupled CFD model with line of sight integration is employed in order to investigate the soot distribution in a 2-D projection associated with the imaging plane, as well as to aid in interpreting the third dimension along the optical depth which is not available within the experimental work. The study also examines the effect of volatility on soot emission characteristics by CFD simulation.
Technical Paper

Contribution of Cold and Hot Start Transients in Engine-out HC Emissions

1998-10-19
982645
Engine-out HC emissions were investigated during cold and hot starts. The tests were conducted at room temperature, on a new Chrysler 2.4-L, 4-cylinder, 16-valve, DOHC, multipoint-port-fuel-injection gasoline engine. Real time engine-out HC emissions were measured using Cambustion Fast Response Flame Ionization Detector (FRFID). Sources of unburned hydrocarbon emissions were discussed in details. Unburned hydrocarbons emitted during the cold-start were much higher than the hot-start. Cylinder-to-cylinder variation was investigated. A fuel inventory program was used to characterize total injected fuel, burned fuel, unburned HC, and fuel unaccounted for (mainly accumulated fuel in the engine system and CO). A fuel interrupt test was run to examine the possibility of burning the leftover fuel after the fuel shut-off. The contribution of the cold and hot start modes in engine-out HC emissions was determined.
Journal Article

Deterioration of B20 from Compression Ignition Engine Operation

2010-10-25
2010-01-2120
Biodiesel has been widely accepted as an alternative for fossil-derived diesel fuel for use in compression ignition (CI) engines. Poor oxidative stability and cold flow properties restrict the use of biodiesel beyond current B20 blend levels (20% biodiesel in 80% ULSD) for vehicle applications. Maintaining the properties of B20 as specified by ASTM D7476-08 is important because, once out of spec, B20 may cause injector coke formation, fuel filter plugging, increased exhaust emissions, and overall loss of engine performance. While the properties of fresh B20 may be within the specifications, under engine operating and longer storage conditions B20 could deteriorate. In a diesel engine, the fuel that goes to the injector and does not enter the cylinder is recycled back to the fuel tank. The re-circulated fuel returns to the fuel tank at an elevate temperature, which can cause thermal oxidation.
Technical Paper

Determining Vibro-Acoustic Characteristics and Structural Damping of an Elastic Monolithic Panel

2019-06-05
2019-01-1538
Evaluations of the dynamic and acoustic responses of panels, partitions, and walls are of concern across many industries, from building home appliances, planning meeting rooms, to designing airplanes and passenger cars. Over the past few decades, search efforts for developing new methodologies and technologies to enable NVH engineers to acquire and correlate dynamically the relationship between input excitations and vibro-acoustic responses of arbitrary-shaped panels has grown exponentially. The application of a particular methodology or technology to the evaluation of a specific structure depends intimately on the goals and objectives of the NVH engineers and industries.
Technical Paper

Development Process of Shock Waves by Supersonic Spray

2004-03-08
2004-01-1769
A numerical simulation of shock wave generation by high-pressure and high-speed spray jet has been conducted to compare to the experimental results obtained by X-ray radiographic technique. Using the space-time conservation element solution element (CESE) method and the stochastic particle techniques to account for fuel injections and droplet collisions, supersonic-spray-induced shock waves are successfully simulated. Similar to the experimental condition, a non-evaporating diesel spray in a chamber filled with inert gas sulfur hexafluoride (SF6) at 1 atm pressure under room temperature (30° C) is simulated. To simulate the needle lift effect in the single-hole diesel injector, various injection-rate profiles were employed. In addition, the effects of discharge coefficients, with Cd ranging from 0.8 to 1.0, were also considered to simulate the shock generation processes in the leading spray front.
Technical Paper

Development of a Multiple Injection Strategy for Heated Gasoline Compression Ignition (HGCI)

2023-04-11
2023-01-0277
A multiple-injection combustion strategy has been developed for heated gasoline direct injection compression ignition (HGCI). Gasoline was injected into a 0.4L single cylinder engine at a fuel pressure of 300bar. Fuel temperature was increased from 25degC to a temperature of 280degC by means of electric injector heater. This approach has the potential of improving fuel efficiency, reducing harmful CO and UHC as well as particulate emissions, and reducing pressure rise rates. Moreover, the approach has the potential of reducing fuel system cost compared to high pressure (>500bar) gasoline direct injection fuel systems available in the market for GDI SI engines that are used to reduce particulate matter. In this study, a multiple injection strategy was developed using electric heating of the fuel prior to direct fuel injection at engine speed of 1500rpm and load of 12.3bar IMEP.
Technical Paper

Diesel Engine Cold Start Combustion Instability and Control Strategy

2001-03-05
2001-01-1237
Combustion instability and white smoke emissions are serious problems during cold starting of diesel engines. In this investigation, a model has been applied to predict misfiring based on an analysis of the autoignition process. The effect of injection timing on combustion instability during the cold start transient, at different ambient temperatures is investigated, both theoretically and experimentally. Maps have been developed to show the zones where misfiring would occur. The experimental work was conducted on a direct injection heavy-duty diesel engine in a cold room. The room temperature covered a range from 21 ° C to -10 ° C. The cycle-by-cycle data analysis was made and results plotted on the developed maps. The experimental results correlated fairly well with the model prediction. Based on the analysis, a new strategy for cold starting can be developed to reduce combustion instability and white smoke emissions.
X