Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

2-Way Driven Compressor for Hybrid Vehicle Climate Control System

2004-03-08
2004-01-0906
The environment is one of the most important issues currently facing the world and the automobile industry is required to respond with eco-cars. To meet this requirement, the hybrid vehicle is one of the most optimal solutions. The hybrid system automatically stops engine idling (idling stop), or stops the engine during deceleration to recover energy. The engine stop however creates a problem concerning the vehicle's climate control system. Because the conventional climate control system incorporates a compressor driven by engine belt, there is almost no cooling performance while the engine is stopped. Until now, when a driver needed more cooling comfort the engine has been switched back on as a compromise measure. To realize cabin comfort that is consistent with fuel saving, a 2-way driven compressor has been developed that can be driven both by engine belt while the engine is running and by electric motor when the engine is stopped.
Technical Paper

42V Power Control System for Mild Hybrid Vehicle (MHV)

2002-03-04
2002-01-0519
In the 42V Mild Hybrid System introduced into market by Toyota for the first time in the world, the crankshaft using belt(s) drives the motor/generator (MG). The set-up employs an inverter unit to control the MG electronically. This paper describes the system configuration, operations, characteristic features and development results of the new power control system. The focus is on the MG, the inverter-for-MG-control and energy regeneration, as well as DC/DC converter for the power supply to the 14V devices.
Journal Article

A CFD Analysis Method for Prediction of Vehicle Exterior Wind Noise

2017-03-28
2017-01-1539
High frequency wind noise caused by turbulent flow around the front pillars of a vehicle is an important factor for customer perception of ride comfort. In order to reduce undesirable interior wind noise during vehicle development process, a calculation and visualization method for exterior wind noise with an acceptable computational cost and adequate accuracy is required. In this paper an index for prediction of the strength of exterior wind noise, referred to as Exterior Noise Power (ENP), is developed based on an assumption that the acoustic power of exterior wind noise can be approximated by the far field acoustic power radiated from vehicle surface. Using the well-known Curle’s equation, ENP can be represented as a surface integral of an acoustic intensity distribution, referred to as Exterior Noise Power Distribution (ENPD). ENPD is estimated from turbulent surface pressure fluctuation and mean convective velocity in the vicinity of the vehicle surface.
Technical Paper

A Characteristic Parameter to Estimate the Optimum Counterweight Mass of a 4-Cylinder In-Line Engine

2002-03-04
2002-01-0486
A dimensionless relationship that estimates the maximum bearing load of a 4-cylinder 4-stroke in-line engine has been found. This relationship may assist the design engineer in choosing a desired counterweight mass. It has been demonstrated that: 1) the average bearing load increases with engine speed and 2) the maximum bearing load initially decreases with engine speed, reaches a minimum, then increases quickly with engine speed. This minimum refers to a transition speed at which the contribution of the inertia force overcomes the contribution of the maximum pressure force to the maximum bearing load. The transition speed increases with an increase of counterweight mass and is a function of maximum cylinder pressure and the operating parameters of the engine.
Technical Paper

A Comparison of Methods for Evaluating Automatic Transmission Fluid Effects on Friction Torque Capacity - A Study by the International Lubricant Standardization and Approval Committee (ILSAC) ATF Subcommittee

1998-10-19
982672
As part of the International Lubricant Standardization and Approval Committee's (ILSAC) goal of developing a global automatic transmission fluid (ATF) specification, members have been evaluating test methods that are currently used by various automotive manufacturers for qualifying ATF for use in their respective transmissions. This report deals with comparing test methods used for determining torque capacity in friction systems (shifting clutches). Three test methods were compared, the Plate Friction Test from the General Motors DEXRON®-III Specification, the Friction Durability Test from the Ford MERCON® Specification, and the Japanese Automotive Manufacturers Association Friction Test - JASO Method 348-95. Eight different fluids were evaluated. Friction parameters used in the comparison were breakaway friction, dynamic friction torque at midpoint and the end of engagement, and the ratio of end torque to midpoint torque.
Journal Article

A Custom Integrated Circuit with On-chip Current-to-Digital Converters for Active Hydraulic Brake System

2016-04-05
2016-01-0091
This paper presents a custom integrated circuit (IC) on which circuit functions necessary for “Active Hydraulic Brake (AHB) system” are integrated, and its key component, “Current-to-Digital Converter” for solenoid current measurement. The AHB system, which realizes a seamless brake feeling for Antilock Brake System (ABS) and Regenerative Brake Cooperative Control of Hybrid Vehicle, and the custom IC are installed in the 4th-generation Prius released in 2015. In the AHB system, as linear solenoid valves are used for hydraulic brake pressure control, high-resolution and high-speed sensing of solenoid current with ripple components due to pulse width modulation (PWM) is one of the key technologies. The proposed current-to-digital converter directly samples the drain-source voltage of the sensing DMOS (double-diffused MOSFET) with an analog-to-digital (A/D) converter (ADC) on the IC, and digitizes it.
Technical Paper

A Data-Based Modeling Approach for the Prediction of Front Impact (NCAP) Safety Performance of a Passenger Vehicle

2021-04-06
2021-01-0923
Designing a vehicle for superior crash safety performance in consumer rating tests such as US-NCAP is a compelling target in the design of passenger vehicles. In today’s context, there is also a high emphasis on making a vehicle as lightweight as possible which calls for an efficient design. In modern vehicle design, these objectives can only be achieved through Computer-Aided Engineering (CAE) for which a detailed CAD (Computer-Aided Design) model of a vehicle is a pre-requisite. In the absence of the latter (i.e. a matured CAD model) at the initial and perhaps the most crucial phase of vehicle body design, a rational approach to design would be to resort to a knowledge-based methodology which can enable crash safety assessment of an assumed design using artificial intelligence techniques such as neural networks.
Technical Paper

A Java Implementation of Future Automotive Systems Technology Simulator (FASTSim) Fuel Economy Simulation Code Modules

2018-04-03
2018-01-0412
Future Automotive Systems Technology Simulator (FASTSim) is a free and open-source tool developed by National Renewable Energy Lab (NREL). Among the attractive capabilities of the FASTSim is that it can perform computationally efficient fuel economy simulations of automotive vehicles with reasonable accuracy for standard or arbitrary drive cycles. The modeling capability includes vehicles with various types of powertrains such as: conventional vehicles (CVs), hybrid-electric vehicles (HEVs), plugin hybrid electric vehicles (PHEVs) and battery-only electric vehicles (BEVs). The public version of FASTSim available from NREL is implemented in Excel, which achieves the goal of good accessibility to a broad audience, but has some limitations, including: i) bottleneck in computations when importing arbitrary drive cycles, ii) slower computations in general than other scripting or programming languages, and iii) less portable to integration with other applications and/or other platforms.
Journal Article

A Linkage Based Solution Approach for Determining 6 Axis Serial Robotic Travel Path Feasibility

2016-04-05
2016-01-0336
When performing trajectory planning for robotic applications, there are many aspects to consider, such as the reach conditions, joint and end-effector velocities, accelerations and jerk conditions, etc. The reach conditions are dependent on the end-effector orientations and the robot kinematic structure. The reach condition feasibility is the first consideration to be addressed prior to optimizing a solution. The ‘functional’ work space or work window represents a region of feasible reach conditions, and is a sub-set of the work envelope. It is not intuitive to define. Consequently, 2D solution approaches are proposed. The 3D travel paths are decomposed to a 2D representation via radial projections. Forward kinematic representations are employed to define a 2D boundary curve for each desired end effector orientation.
Technical Paper

A Molecular Dynamics Analysis of the Traction Fluids

2007-04-16
2007-01-1016
Non-equilibrium all-atom MD simulations are used to study the traction properties of hydrocarbon fluids. A fluid layer is confined between two solid Fe plates under the constant normal force of 1.0 GPa. Traction simulations are performed by applying a relative sliding motion to the Fe plates. Shear behaviors of nine hydrocarbon fluids are simulated on a sufficiently large film thickness of 6.7 nm, and succeeded in reproducing the order of the experimental traction coefficients. The dynamic mechanism of the momentum transfer on layers of fluid molecules are analyzed focusing on the intermolecular interactions (density profile, orientation factor, pair-correlation function) and intramolecular interactions (intramolecular interaction energy, conformation change of alicyclic ring). In contrast to the case of n-hexane, which shows low traction due to a fragile chain-like interaction, other mechanisms are obtained in the high traction molecules of cyclohexane, dicyclohexyl and santotrac 50.
Technical Paper

A New Material Recycling Technology for Automobile Rubber Waste

2003-10-27
2003-01-2775
A new material recycling technology for crosslinked rubber was developed using the continuous reactive processing method. In this process of producing reclaimed rubber, breakage of crosslinking points in the crosslinked rubber occurs selectively under the controls of shear stress, reaction temperature, and internal pressure in a modular screw type reactor. Deodorization during the process has also become possible by a newly developed method. The reclaimed rubber obtained from rubber waste generated from both automobile manufacturing products and post-consumer products shows excellent mechanical properties applicable to new rubber compounds. Furthermore, an enhanced rubber recycling process for producing thermoplastic elastomer (TPE) based on rubber waste has been established. The obtained TPE exhibits highly recoverable rubber elasticity and mechanical properties comparable to commercial TPE.
Technical Paper

A Novel Approach for Combat Vehicle Mobility Definition and Assessment

2012-04-16
2012-01-0302
Mobility assessment for combat vehicles is often a great challenge for the military due to various subjective attributes. The attributes' characteristics vary significantly depending on the vehicle type and its operating environments such as terrain, weather, and human factors. A clear definition and relationship between multiple attributes including human factors is necessary to assess mobility. To the best of authors' knowledge, many existing mobility assessment techniques use complex analytical methods and focus on individual attributes. In this paper, for the first time, the authors propose a novel approach to define vehicle mobility and its influencing attributes using qualitative linguistic fuzzy variables, which are defined as having values between 0 and 1. The authors also propose a fuzzy logic mobility (FLM) model and a simulation approach to assess a combat vehicle's mobility.
Journal Article

A Preliminary Study on the Restraint System of Self-Driving Car

2020-04-14
2020-01-1333
Due to the variation of compartment design and occupant’s posture in self-driving cars, there is a new and major challenge for occupant protection. In particular, the studies on occupant restraint systems used in the self-driving car have been significantly delayed compared to the development of the autonomous technologies. In this paper, a numerical study was conducted to investigate the effectiveness of three typical restraint systems on the driver protection in three different scenarios.
Technical Paper

A Simple Linear Approach for Transient Fuel Control

2003-03-03
2003-01-0360
Significant A/F ratio excursion may occur during some engine transient operations, especially for transient periods of throttle tip in or tip out. A/F ratio excursion results in excessive emissions, extra fuel consumption, driveability deterioration and three-way-catalyst (TWC) efficiency drop. Simple two-parameter (X, τ) wall wetting models have traditionally been used to describe this transient A/F ratio excursion phenomenon. The transient fuel control techniques are utilized for this model to be applicable across vehicles, engines, fuel types and ambient conditions, so as to compensate for the A/F ratio excursion with the extra compensation fuel. More complicated model structures must be further expanded and model dependence on various environment conditions must be established to achieve a precise model. In this paper, a simple linear approach is proposed for transient fuel control, using least squares estimation.
Technical Paper

A Study of Anticorrosive Technology in Super Long Life Coolant

2004-03-08
2004-01-0055
The protection of the environment has become a worldwide concern. To reduce the effects of engine coolant on the environment, ways to minimize the amount of coolant released into the environment were investigated. One option is to develop a super long-life coolant. The key issue in developing a long-life engine coolant is selecting an appropriate inhibitor. The inhibitor should be stable over time and completely anticorrosive. In general carboxylic acids are considered to be the class of inhibitors with the highest stability. However, various lab studies have shown the long-term use of monocarboxylic acid could form the foreign substance that causes blockage in radiators. Therefore, the mechanism leading to the formation of foreign substance was determined. A series of carboxylic acids and additives were evaluated. An optimum formulation was then determined, resulting in the development of the Super Long Life Coolant.
Technical Paper

A Study of Car Body Structure to Reduce Environmental Burdens

2003-10-27
2003-01-2833
In the initial design stage, it is important to discuss what kind of body concept is effective from a viewpoint of environment burden reduction. This paper describes the importance of both weight reduction and recycling through conducting LCA (Life Cycle Assessment) for four kinds of body structures. In addition, using each software, DFMA (Design for Manufacture and Assembly), DFE (Design for Environment) and LCA to parts unit, each effectiveness was discussed through the assessment of the material-hybrid body.
Technical Paper

A Study of Evaluating the Real-time Property for Engine Control Software

2001-03-05
2001-01-0058
Recently, the role of ECU(Electronic Control Unit) on vehicles has been becoming more important year by year in order to meet the requirements for safety and the environmental matters. Particularly, the ECU of Engine Management Systems has been becoming indispensable in order to realize high performance, low fuel consumption and low exhaust emission. Therefore, the size of software has also been increasing, and been becoming more complex and complicated. As the ECU software size becomes large and complex, the verification and validation of the software by using the current development method has been becoming more difficult. Especially it has been becoming more difficult to validate the Real-time property of the software. The Real-time property means whether the execution of the software is in time for the deadline which is decided on the software design.
Technical Paper

A Study of Greenhouse Gas Emissions Reduction Opportunity in Light-Duty Vehicles by Analyzing Real Driving Patterns

2017-03-28
2017-01-1162
Electric drive vehicles (EDV) have the potential to greatly reduce greenhouse gas (GHG) emissions and thus, there are many policies in place to encourage the purchase and use of gasoline-hybrid, battery, plug-in hybrid, and fuel cell electric vehicles. But not all vehicles are the same, and households use vehicles in very different ways. What if policies took these differences into consideration with the goal of further reducing GHG emissions? This paper attempts to answer two questions: i) are there certain households that, by switching from a conventional vehicle to an EDV, would result in a comparatively large GHG reduction (as compared to other households making that switch), and, if so, ii) how large is the difference in GHG reductions? The paper considers over 65,000 actual GPS trip traces (generated by one-second interval recording of the speed of approximately 2,900 vehicles) collected by the 2013 California Household Travel Survey (CHTS).
Technical Paper

A Study of Mechanism of Engine Idling Rattle Noise in Hybrid Transaxles

2020-04-14
2020-01-0421
Quietness is one of the most important characteristics for Hybrid Electric Vehicle quality. Reduction of the rattle noise caused by the torque fluctuation of an internal combustion engine can contribute to get a customer satisfaction. Toyota Hybrid System(THS) also has same requirement. Especially, the rattle noise during idling may happen discontinuously despite of periodical engine combustion excitation. It is necessary to study the mechanism and reduce the rattle noise. At lower engine torque range, decreasing the torsional damper’s stiffness can improve this condition as the manual transaxle done. However, the rattle noise can occur easily in conditions of relatively large torque spike inputs to the torsional system, such as the engine start/stop function of THS using the motor/generator in the transaxle.
Technical Paper

A Study on Combined Effects of Road Roughness, Vehicle Velocity and Sitting Occupancies on Multi-Occupant Vehicle Ride Comfort Assessment

2017-03-28
2017-01-0409
It is recognized that there is a dearth of studies that provide a comprehensive understanding of vehicle-occupant system dynamics for various road conditions, sitting occupancies and vehicle velocities. In the current work, an in-house-developed 50 degree-of-freedom (DOF) multi-occupant vehicle model is employed to obtain the vehicle and occupant biodynamic responses for various cases of vehicle velocities and road roughness. The model is solved using MATLAB scripts and library functions. Random road profiles of Classes A, B, C and D are generated based on PSDs (Power Spectral Densities) of spatial and angular frequencies given in the manual ISO 8608. A study is then performed on vehicle and occupant dynamic responses for various combinations of sitting occupancies, velocities and road profiles. The results obtained underscore the need for considering sitting occupancies in addition to velocity and road profile for assessment of ride comfort for a vehicle.
X