Refine Your Search

Topic

Search Results

Technical Paper

A Comparative Study on ESC Drive and Brake Control Based on Hierarchical Structure for Four-Wheel Hub-Motor-Driven Vehicle

2019-11-04
2019-01-5051
Electronic Stability Control (ESC) is an important measure to proactively guarantee vehicle safety. In this paper, the method of four-wheel hub-motor torque control is compared with the traditional single-wheel hydraulic brake control in ESC system. The control strategy adopts the hierarchical structure. In upper controller, the stability of the vehicle is identified by threshold method, the additional yaw moment control uses a way to get the moment including feedforward and feedback parts based on the linear quadratic regulator (LQR). The medium controller is tire slip rate control, in order to get the optimal target slip rate from the upper additional yaw moment, a method of quadratic programming to optimize the longitudinal force is proposed for each wheel. The inputs of tire state for the magic tire model is introduced so as to calculate the target slip rate from the target longitudinal force.
Technical Paper

A Pre-Warning Method for Cornering Speed of Concrete Mixer Truck

2020-04-14
2020-01-1003
The high gravity center of the concrete mixer truck reduces the truck’s stability while steering. The rolling stirring tank makes the stability even worse than the regular engineering vehicle due to the dynamic variation of the centroid position. Most of the researches on the rollover stability of concrete mixer trucks focus on the rollover model establishment and dynamic simulation module. The change of concrete centroid is ignored when the safety cornering speed is calculated. This paper proposes a pre-warning method for the cornering speed of concrete mixer trucks based on centroid dynamic simulation. In the method, the mixing tank stirring model and the vehicle driving dynamic model are established on the Fluent and TruckSim simulation platforms, respectively. The theoretical speed threshold obtained by simulation is used as the evaluation index of the warning speed in the curve. Firstly, the dynamic simulation of the stirring tank model is carried out by Fluent.
Journal Article

A Wavelet Neural Network Method to Determine Diesel Engine Piston Heat Transfer Boundary Conditions

2012-09-10
2012-01-1760
This paper presents a method of calculating temperature field of the piston by using a wavelet neural network (WNN) to identify the unknown boundary conditions. Because of the complexity of the heat transfer and limitations of experimental conditions of heat transfer analysis of the piston in a diesel engine, boundary conditions of the piston temperature field were usually obtained empirically, and thus the result itself was uncertain. By employing the capability of resolution analysis from a wavelet neural network, the method obtains improved boundary heat transfer coefficients with a limited number of measured temperatures. Using FEA software iteratively, results show the proposed wavelet neural network analysis method improves the prediction of unknown boundary conditions and temperature distribution consistent with the experimental data with an acceptable error.
Technical Paper

Analysis and Modeling of Transmission Efficiency of Vehicle Driveline

2014-04-01
2014-01-1779
This work analyzes the transmission efficiency of vehicle driveline including the gearbox, universal transmission and differential. Based on the structure of transmission, mathematic models are built to analyze transmission's characteristics. However, an experiment reveals the limitation of this method. Then, the paper statistically analyzes the experimental data and mainly analyzes the influencing factors. Then Neural Network is used to build the efficiency model. A method called “filling data and gradually extrapolating” is used when building neural network model. Finally, the neural network model is used in the simulation of fuel consumption. The conclusion is Neural Network model can imitate the transmission efficiency of vehicle driveline efficiently, but its internal structure is not clear so other modeling methods are needed to be found.
Technical Paper

Anti-Skid System for Ice-Snow Curve Road Surface Based on Visual Recognition and Vehicle Dynamics

2023-04-11
2023-01-0058
Preventing skidding is essential for studying the safety of driving in curves. However, the adhesion of the vehicle during the driving process on the wet and slippery road will be significantly reduced, resulting in lateral slippage due to the low adhesion coefficient of the road surface, the speed exceeding the turning critical, and the turning radius being too small when passing through the corner. Therefore, to reduce the incidence of traffic accidents of passenger cars driving in curves on rainy and snowy days and achieve the purpose of planning safe driving speed, this paper proposes a curve active safety system based on a deep learning algorithm and vehicle dynamics model. First,we a convolutional neural network (CNN) model is constructed to extract and judge the characteristics of snow and ice adhesion on roads.
Technical Paper

Assisted Steering Control for Distributed Drive Electric Vehicles Based on Combination of Driving and Braking

2023-10-30
2023-01-7012
This paper presents a low-speed assisted steering control approach for distributed drive electric vehicles. When the vehicle is driven at low speed, the braking of the inner-rear wheel is combined with differential drive to reduce the turning radius. A hierarchical control structure has been designed to achieve comprehensive control. The upper-level controller tracks the expected yaw rate and vehicle side-slip angle through a Linear Quadratic Regulator (LQR) algorithm. The desired yaw rate and vehicle side-slip angle are obtained according to the reference vehicle model, which can be regulated by the driver through the accelerator pedal. The lower-level controller uses a quadratic programming algorithm to distribute the yaw moment and driving moment to each wheel, aiming to minimize tire load rate variance.
Technical Paper

Automatic Parking Control Algorithms and Simulation Research Based on Fuzzy Controller

2020-04-14
2020-01-0135
With the increase of car ownership and the complex and crowded parking environment, it is difficult for drivers to complete the parking operation quickly and accurately, which may cause traffic accidents such as vehicle collisions and road jams because of poor parking skills. The emergence of an automatic parking system can help drivers park safely and reduce the occurrence of safety accidents. In this paper, the neural network identifier on the control method of an adaptive integral derivative of a neural network is proposed for an automatic parallel parking system with front-wheel steering is studied by using MATLAB/Simulink environment, and the simulation is carried out. Firstly, according to vehicle parameters and obstacle avoidance constraints, the minimum parking space, and parking starting position are calculated. Meanwhile, the path planning of parallel parking spaces is carried out by quintic polynomial.
Technical Paper

Big-Data Based Online State of Charge Estimation and Energy Consumption Prediction for Electric Vehicles

2016-04-05
2016-01-1200
Whether the available energy of the on-board battery pack is enough for the driver’s next trip is a major contributor in slowing the growth rate of Electric Vehicles (EVs). What’s more, the actual capacity of the battery pack depend on so many factors that a real-time estimation of the state of charge of the battery pack is often difficult. We proposed a big-data based algorithm to build a battery pack dynamic model for the online state of charge estimation and a stochastic model for the energy consumption prediction. And the good performance of sensors, high-bandwidth communication systems and cloud servers make it convenient to measure and collect the related data, which are grouped into three categories: standard, historical and real-time data. First a resistance-capacitance ( RC )-equivalent circuit is taken consideration to simplify the battery dynamics.
Technical Paper

Brake Guidance System for Commercial Vehicles with Coordinated Friction and Engine Brakes

2017-09-17
2017-01-2508
Using friction brakes for long time can increase easily its temperature and lower vehicle brake performance in the downhill process. The drivers' hysteretic perception to future driving condition could mislead them to stop untimely the engine brake, and some other auxiliary braking devices are designed to increase the brake power for reduction of the friction brake torque. The decompression engine brake has complex structure and high cost, and the application of eddy current retarder or hydraulic retarder on the commercial vehicles is mainly limited to their cost and mass. In this paper, an innovative brake guidance system for commercial vehicles with coordinated friction brakes and engine brake is introduced to guide the drivers to minimize the use of the friction brakes on the downhill with consideration of future driving conditions, which is aimed at releasing the engine brake potential fully and controlling the friction brake temperature in safe range.
Technical Paper

Co-simulation Based Hydraulic Retarder Braking Control System

2009-10-06
2009-01-2907
Hydraulic retarder has been widely applied on military vehicles and heavy commercial vehicles because of it could provide great brake torque and has lasting working time [1]. In order to reduce driver's frequent actions in braking process and prevent hydraulic retarder system from overheating, it is need to apply constant braking torque control, this control target has a strict requirement to hydraulic control system design. Many parameters often require repeated test to determine, which increases the R&D cost and extends the research cycle. This paper tries to find a time-efficient research method of hydraulic retarder control system through studying on a heavy military vehicle hydraulic retarder system. Hydraulic retarder model is set up through test data. The hydraulic control system is built based on AMESim. Controller model is set up based on PID control. The whole vehicle brake model is built based on MATLAB/Simulink.
Technical Paper

Collision Avoidance Strategy of High-Speed AEB System Based on Minimum Safety Distance

2021-04-06
2021-01-0335
The automatic emergency braking (AEB) system is an important part of automobile active safety, which can effectively reduce rear-end collision accidents and protect drivers' safety through active braking. AEB system has been included in many countries' new car assessment programme as the test content of active safety. In view of obviously deficiencies of the existing AEB control algorithm in avoiding longitudinal collision at high speed, it is proposed to an optimized model of the minimum safe distance for rear-end collision prevention on high-speed road in order to improve the accuracy of AEB system. Considering the influence of road adhesion coefficient and human comfort on the maximum braking deceleration, it is established to a more accurate and reasonable AEB system to avoid collision for expressway. The collision avoidance strategy is verified by simulation software.
Technical Paper

Design and Simulation Analysis for an Integrated Energy-Recuperation Retarder

2016-04-05
2016-01-0458
Vehicle auxiliary braking system is very significant to the brake safety. The eddy current retarder (ECR) has a good braking performance, but the braking torque would fade under high speed domain. In the contrary, the regenerative brake (RGB) could provide a satisfied braking performance in high speed domain. However, the braking torque in low speed domain is insufficient. This paper proposed a novel concept of the integrated energy-recuperation retarder (IEER), which would take advantage of the merits of both the ECR and the RGB to have a steady braking performance in all-speed domain. The IEER integrates the structures of rotary eddy current retarder (RECR) and the RGB, both of which share a stator. Braking torque of the IEER produced by stator core and armature-windings can stack together, and therefore the IEER can provide greater braking torque than the RECR. Besides, the IEER can recover electric energy from armature-windings.
Technical Paper

Design and Simulation of Active Anti-Rollover Control System for Heavy Trucks

2022-03-29
2022-01-0909
With the rapid development of the logistics and transportation industry, heavy-duty trucks play an increasingly important role in social life. However, due to the characteristics of large cargo loads, high center of mass and relatively narrow wheelbase, the driving stability of heavy trucks are poor, and it is easy to cause rollover accidents under high-speed driving conditions, large angle steering and emergency obstacle avoidance. To improve the roll stability of heavy trucks, it is necessary to design an active anti-rollover control system, through the analysis of the yaw rate and the load transfer rate of the vehicle, driving states can be estimated during the driving process. Under the intervention of the control system, the lateral transfer rate of heavy trucks can be reduced to correct the driving posture of the vehicle body and reduce the possibility of rollover accidents.
Technical Paper

Development of an Integrated Braking Control Strategy for Commercial Vehicles

2015-01-14
2015-26-0080
Commercial vehicle plays an important role during transportation process under the demand of high speed, convenience and efficiency. So improving active safety of commercial vehicle has become a research topic. Due to the fact that braking characteristic is the basic and most closely related to safe driving of vehicle's performances, this paper aims to improve the braking performance by researching into an integrated control method based on the mature ABS products. Firstly, a strategy which gives priority to ABS and differential yaw moment control, complementary with the hydraulic active suspension control is proposed. In comparison with ABS, the combined control of brake system and suspension system is designed not only for preventing wheels lock. But the directional control to avoid roll or spin is more focused on. Then in order to run the novel method correctly, the controlled variables and evaluation criteria are illustrated briefly.
Technical Paper

Differential Speed Steering Control for Four-Wheel Distributed Electric Vehicle

2019-04-02
2019-01-1235
In order to perform differential control instead of the mechanical differential and improve the steering performance of distributed electric vehicles, a two-level differential speed steering control strategy is proposed. Firstly, an upper-layer controller to track the yaw rate is designed based on PID feedback and 3-D lookup table model, which could shorten the response time and reduce the impact of model parameters mismatch. Then, in order to improve the robustness to external disturbances and parameter uncertainties, a lower-layer controller to track the wheel speed is proposed based on integral sliding mode control. Moreover, three simulations are conducted to validate the proposed strategy. The first simulation results indicate that the driving torques of the inner and outer wheels are distributed properly to avoid wheel slip. In the second simulation, when the conventional steering system fails, the proposed control strategy could avoid vehicle losing steering function.
Technical Paper

Driver Distraction Detection with a Two-stream Convolutional Neural Network

2020-04-14
2020-01-1039
Driver distraction detection is crucial to driving safety when autonomous vehicles are co-piloted. Recognizing drivers’ behaviors that are highly related with distraction from real-time video stream is widely acknowledged as an effective approach mainly due to its non-intrusiveness. In recently years, deep learning neural networks have been adopted to by-pass the procedure of designing features artificially, which used to be the major downside of computer-vision based approaches. However, the detection accuracy and generalization ability is still not satisfying since most deep learning models extracts only spatial information contained in images. This research develops a driver distraction model based on a two-stream, spatial and temporal, convolutional neural network (CNN).
Technical Paper

Driving Fatigue Detection based on Blink Frequency and Eyes Movement

2017-03-28
2017-01-1443
The development of the vehicle quantity and the transportation system accompanies the rise of traffic accidents. Statistics shows that nearly 35-45% traffic accidents are due to drivers’ fatigue. If the driver’s fatigue status could be judged in advance and reminded accurately, the driving safety could be further improved. In this research, the blink frequency and eyes movement information are monitored and the statistical method was used to assess the status of the driving fatigue. The main tasks include locating the edge of the human eyes, obtaining the distance between the upper and lower eyelids for calculating the frequency of the driver's blink. The velocity and position of eyes movement are calculated by detecting the pupils’ movement. The normal eyes movement model is established and the corresponding database is updated constantly by monitoring the driver blink frequency and eyes movement during a certain period of time.
Technical Paper

Effect of Circumferential Magnetic Field on Braking Performance of a Direct Vane Magnetorheological Fluid Retarder

2019-04-02
2019-01-0342
The hydraulic retarder used in commercial vehicles can provide hydraulic damping to generate braking torque, reducing the pressure of the braking system on the slope section and increasing the safety. In this paper, the magnetorheological fluid with fast magnetic field reflection characteristics is used to increase the response speed of the hydraulic retarder, which can effectively reduce the response time of the hydraulic retarder. In this paper, the influence of the change of circumferential magnetic field on the braking torque of the magnetorheological fluid retarder is studied.
Technical Paper

Effect of Stator Surface Area on Braking Torque and Wall Heat Dissipation of Magnetorheological Fluid Retarder

2020-04-14
2020-01-0937
Magnetorheological fluid (MRF) is used as the transmission medium of the hydraulic retarder. The rheological properties are regulated by changing the magnetic field to achieve accurate control of the retarder's braking torque. Under the action of the external magnetic field, the flow structure and performance of the MRF retarder will be changed in a short time. The apparent viscosity coefficient increases by several orders of magnitude, the fluidity deteriorates and the heat generated by the brake cannot be transferred through the liquid circulation, which will affect the braking torque of the retarder. Changing the surface area of the stator also has an influence on the braking torque of the retarder and the wall heat dissipation. In this study, the relationship between the braking torque of the MRF retarder and the stator surface area of the retarder was analyzed.
Technical Paper

Effect of Temperature on Braking Efficiency Stability of Magnetorheological Fluid Auxiliary Braking Devices

2017-09-17
2017-01-2510
Fluid auxiliary braking devices can provide braking torque through hydraulic damping, fluid auxiliary braking devices can also convert vehicular inertia energy into transmission fluid heat energy during the braking, which can effectively alleviate the work pressure of the main brake. Traditional hydraulic auxiliary braking devices use transmission fluids to transmit torque, however, there is a certain lag effect during the braking. The magnetorheological fluid (MR fluid) can also be used to transmit torque because it has the advantages of controlling braking torque linearly and responding fast to the magnetic field changed. The temperature of MR fluid will increase when the vehicle is engaged in continuous braking. MR fluid temperature changes will cause a bad influence on the efficiency stability of auxiliary braking.
X