Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

04 Emission Reduction by Cylinder Wall Injection in 2-Stroke S.I. Engines

2002-10-29
2002-32-1773
A direct injection system in which fuel was injected through the cylinder wall was developed and detailed investigation was made for the purpose of reducing short-circuit of fuel in 2-stroke engines. As a result of dynamo tests using 430cc single cylinder engine, it was found that the injector was best attached at a location as close to TDC as possible on the rear transfer port side, and that the entire amount of fuel should be injected towards the piston top surface. Emissions were worsened if fuel was injected towards the exhaust port or spark plug. Although the higher injection pressure resulted in large emissions reduction effects, it did not have a significant effect on fuel consumption. When a butterfly exhaust valve, known to be effective against irregular combustion in the light load range, was applied, it was found to lead to further reductions in HC emission and fuel consumption while also improving combustion stability.
Technical Paper

A Comparison of Methods for Evaluating Automatic Transmission Fluid Effects on Friction Torque Capacity - A Study by the International Lubricant Standardization and Approval Committee (ILSAC) ATF Subcommittee

1998-10-19
982672
As part of the International Lubricant Standardization and Approval Committee's (ILSAC) goal of developing a global automatic transmission fluid (ATF) specification, members have been evaluating test methods that are currently used by various automotive manufacturers for qualifying ATF for use in their respective transmissions. This report deals with comparing test methods used for determining torque capacity in friction systems (shifting clutches). Three test methods were compared, the Plate Friction Test from the General Motors DEXRON®-III Specification, the Friction Durability Test from the Ford MERCON® Specification, and the Japanese Automotive Manufacturers Association Friction Test - JASO Method 348-95. Eight different fluids were evaluated. Friction parameters used in the comparison were breakaway friction, dynamic friction torque at midpoint and the end of engagement, and the ratio of end torque to midpoint torque.
Technical Paper

A Layer Structured Model Based Diagnosis: Application to a Gear Box System

2011-04-12
2011-01-0753
OBD (On Board Diagnosis) has been applied to detect malfunctions in powertrains. OBD requirements have been extended to detect various failures for ensuring the vehicle emission control system being normal. That causes further costs for additional sensors and software works. Two layers diagnosis system is proposed for a passenger car gearbox system to detect changes from normal behavior. Conventional physical constraints based diagnosis is placed on the base layer. Model based diagnosis and specific symptom finding diagnosis are built on the second layer. Conventional physical constraints based diagnosis is direct and effective way to detect the failure of system if the detected signals exceed their normal ranges. However under the case of system failure with related signals still remain in normal ranges, the conventional detection measures can not work normally. Under this case, Model based diagnosis is proposed to enhance the functionality of diagnosis system.
Technical Paper

A New Method of Stress Calculation in Spot Welded Joint and Its Application to Fatigue Life Prediction of Actual Vehicle

2003-10-27
2003-01-2809
A method of fatigue life prediction of spot welded joint under multi-axial loads has been developed by fatigue life estimation working groups in the committee on fatigue strength and structural reliability of JSAE. This method is based on the concept of nominal structural stress ( σ ns) proposed by Radaj and Rupp, and improved so that D value is not involved in stress calculation. The result of fatigue life estimation of actual vehicle with nominal structural stress which was calculated through newly developed method had very good correlation with the result of multi-axial loads fatigue test carried out with test piece including high strength steel.
Technical Paper

A New Tightening Method for Bolted Joints by the Simultaneous Application of Torque and Compressive Force

2001-03-05
2001-01-0978
The scatter of bolt clamping force tightened by the conventional torque control method very often causes loosening and fatigue failure of bolted joints. Different values of frictional coefficients between mating screw surfaces and between mating bearing surfaces cause the scatter of clamping force in each tightening. In this study, a new tightening method to reduce the scatter of clamping force of bolted joints has been developed. In the new method, the frictional coefficients at screw and at bearing surface of bolt head can be separately detected during a tightening process by simultaneously application of tightening torque and compressive force to a bolt. The tightening experiments have been successfully conducted to demonstrate the efficiency and usefulness of the proposed method. Furthermore the optimum configuration of bolt head to improve the accuracy of the proposed method has been investigated.
Technical Paper

A Reduced Order Model for a Passenger Car Turbo Charging System and Application to Engine Output Torque Profile Control

2015-09-01
2015-01-1981
Downsizing engines with a turbocharging system have been widely applied to passenger cars to improve fuel economy. Engine torque response to accelerator operation is one of important features in addition to steady state performance of the system. Torque profile management for turbocharged internal combustion engines is one of required technologies. A turbocharging system for a car is a system with a positive feedback loop in which compressed air drives the compressor after the combustion process. A reduced order model was derived for the charging system. Pressure ratio of a compressor is proportional to square of turbine speed and the turbine speed is a first order delay system to throttle opening in the model. Model structure was designed from mathematical equations that describe turbine and compressor works. Model parameters were identified from measured data. An output torque profile control strategy based on the derived model is investigated.
Technical Paper

A Reduced Order Turbo-Charging Model for Real Time Engine Torque Profile Control

2015-11-17
2015-32-0766
Torque profile control is one of required technologies for propulsion engines. A smaller parametric model is more preferable for control algorithm design and evaluation. Mean value engine torque can be obtained from throttle opening change using a transfer function. A transfer function for a turbocharged engine was investigated with thermo-dynamic equations for a turbine and a compressor and test data. A small turbocharged engine was tested to model the air transfer process. Turbine speed was measured with temperatures, pressures and air mass flow. Turbine speed response is like a first order system to air mass flow into a combustion chamber. The pressure ratio at the compressor is approximated by a curve proportional to the turbine speed square. Based on those findings, a reduced order model for describing dynamic air transfer process with a turbocharger was constructed. The proposed model is compact and suitable for engine torque control design and controller implementation.
Technical Paper

A Study of Transmission fluid Performance on Fuel Economy

2007-07-23
2007-01-1980
To apply a fuel economy performance to AT&CVT fluid for common use (hereinafter AT/CVT fluid) and manual transmission fluid, by optimizing fluid viscosity, a fundamental study was investigated. Generally, it is well known that the viscosity of polymer-added transmission fluids is gradually reduced, due to deterioration of the viscosity index improver caused by shear stress. An excessive viscosity reduction causes an operation failure or damage to the transmission. Considering above factor, the authors focused attention on the potential of a low viscosity formulation to improve fuel efficiency by reducing an internal stirring-resistance of the transmission. Also from the viewpoint of friction characteristics, the performance of a base oil was studied. Utilizing the EHL (Elast-Hydrodynamic Lubrication) tester [1] and vehicle tests, the performance of base oils was evaluated for the fluid development.
Journal Article

A Study on Knocking Prediction Improvement Using Chemical Reaction Calculation

2015-09-01
2015-01-1905
Compression ratio of newly developed gasoline engines has been increased in order to improve fuel efficiency. But in-cylinder pressure around top dead center (TDC) before spark ignition timing is higher than expectation, because the low temperature oxidization (LTO) generates some heat. The overview of introduced calculation method taking account of the LTO heat of unburned gas, how in-cylinder pressure is revised and some knowledge of knocking prediction using chemical kinetics are shown in this paper.
Technical Paper

A Study on Practical Use of Diesel Combustion Calculation and Development of Automatic Optimizing Calculation System

2015-09-01
2015-01-1845
A KIVA code which is customized for passenger car's diesel engines is linked with an engine performance simulator and demonstrated with our optimizing calculation system. Aiming to fulfill our target calculation speed, the combustion model of the KIVA code is changed from a chemical reaction calculation method to a chemical equilibrium calculation method which is introduced a unique technique handling chemical species maps. Those maps contain equilibrium mole fraction data of chemical species according to equivalence ratio and temperature. Linking the KIVA code to the engine simulator helps to evaluate engine performance by indicated mean effective pressure (IMEP). The optimizing calculation system enables to obtain response surfaces. Observing the response surfaces, clear views of engine performance characteristics can be seen. The overview of this calculation system and some examples of the calculation are shown in this paper.
Technical Paper

A Study on Shudder in Automatic Transmission Lock-up Clutch Systems and Its Countermeasures

2011-05-17
2011-01-1509
In recent years, automatic transmissions have become widely used in cars. Compared to manual transmissions, automatic transmissions suffer from poor fuel economy. In order to overcome this disadvantage, a lock-up clutch system in the torque converter has been applied. When the rotating speed of the turbine approaches that of the pump, the input shaft is directly connected to the gear train through friction by means of the lock-up clutch. In the process of slipping at the lock-up clutch, frictional vibration referred to as shudder sometimes occurs. When shudder occurs, the power train, as well as the tires and the car seats, vibrates. Therefore, the shudder adversely affects passenger comfort. In the present study, experiments are conducted to analyze the shudder mechanism using a bench test apparatus and an actual vehicle. The characteristics of friction in the lock-up clutch is found to have a negative slope with respect to the relative slip velocity.
Technical Paper

A reduced order turbocharging process model for manifold pressure control with EGR

2019-12-19
2019-01-2212
A mean value turbocharged engine model is useful in terms of accuracy and convenience for fuel economy strategies or engine controller development. Turbocharging process is a feedback system with a positive gain, i.e. increasing exhaust work leads to increasing a cycle work. The gain of the feedback system is determined mainly by exhaust work ratio in a cycle and inertia of the turbine. The work ratio was investigated based on engine test with EGR. A turbocharging process model was obtained using the work ratio in a cycle and theoretical equations. The model is applied to investigate manifold absolute pressure response with EGR.
Technical Paper

Advanced Super Charge System for Small Engines

1999-09-28
1999-01-3318
The specific output of 4-cycle engines are generally smaller than that of 2-cycle engines. Increasing engine speed is one method to improve the specific output, however, it contains some disadvantages in application. Hence, improvement in torque with the 4-cycle engine is desirable. Although torque could be improved by super-charging, it seems difficult to apply existing systems for small displacement engines due to problems of their size and cost. We have, therefore, newly developed a super-charging system named Advanced Crankcase Super Charge (hereinafter referred to as ACSC) using a crankcase as a supercharger. In this study, we made a 50cc single cylinder prototype engine with ACSC and carried out the engine unit tests and actual running tests on a scooter. From these tests, the torque that is twice as that of the naturally aspirated engine was obtained.
Technical Paper

An 1D-3D Integrating Numerical Simulation for Engine Cooling Problem

2006-04-03
2006-01-1603
The combination of 1D and 3D fluid flow models is achieved using a co-simulation methodology. This realizes that the internal flow in a component simulated in 3D is incorporated into a network (system) containing components represented in 1D. This methodology gives the details of the internal flow while conserving overall mass flow in the system, thus eliminating uncertainties in boundary conditions prescribed in the 3D model and reducing the overall simulation time. This paper shows numerical results for internal flow of water flow circuit of engine cooling system and availability and current problem of 1D/3D co-simulation method are discussed.
Technical Paper

An Analysis on Cycle-by-cycle Variation and Trace-knock using a Turbulent Combustion Model Considering a Flame Propagation Mechanism

2019-12-19
2019-01-2207
Gasoline engines have the trace-knock phenomena induced by the fast combustion which happens a few times during 100 cycles. And that constrains the thermal efficiency improvement due to limiting the ignition timing advance. So the authors have been dedicating a trace-knock simulation so that we could obtain any pieces of information associated with trace-knock characteristics. This simulation consists of a turbulent combustion model, a cycle-by-cycle variation model and a chemical calculation subprogram. In the combustion model, a combustion zone is considered in order to obtain proper turbulent combustion speed through wide range of engine speed. From a cycle-by-cycle variation analysis of an actual gasoline engine, some trace-knock features were detected, and they were involved in the cycle-by-cycle variation model. And a reduced elementary reaction model of gasoline PRF (primary reference fuel) was customized to the knocking prediction, and it was used in the chemical calculation.
Technical Paper

An Experimental Study of Connecting Rod Big Ends

1995-02-01
950202
Connecting rod design factors, such as geometric shape, capscrew torque and materials can significantly affect bore distortion and assembly stress. In this paper, experiments using different materials were conducted on several connecting rod big-ends with various shapes, bosses and bolts. The results show that the distortion of the big-end bore and the bolt stress are influenced considerably by the big-end shape, the bolt axial tension and the material under inertia force. It was also observed that the bolt bending stress and the load separating the big-end joint surface could be calculated with high accuracy using three-dimensional FEM in the initial connecting rod design.
Technical Paper

An Improvement of the Prediction Method of the Idling Rattle in Manual Transmission - In the Case of the Manual Transmission with Backlash Eliminator -

2001-03-05
2001-01-1164
To reduce the idling rattle of manual transmissions, the computer simulation has been utilized. However, the conventional simulation model could not express properly the relationship between the transmission oil temperature and the rattle noise level, especially in case of transmission with backlash eliminator in constant mesh gears. In this study, the authors carried out detail experiments investigating the motion of each part in the transmission. Based on the experimental results, an additional mass representing all constant mesh speed gears supported on plain or rolling element bearings was introduced to the simulation model. Using the improved model, it was confirmed that the calculated RMS value of the fluctuation in countershaft angular acceleration corresponds to the experimental rattle noise level.
Technical Paper

Analyses of Cycle-to-Cycle Variation of Combustion and In-Cylinder Flow in a Port Injection Gasoline Engine Using PIV and PLIF Techniques

2017-10-08
2017-01-2213
Reduction in the cycle-to-cycle variation (CCV) of combustion in internal combustion engines is required to reduce fuel consumption, exhaust emissions, and improve drivability. CCV increases at low load operations and lean/dilute burn conditions. Specifically, the factors that cause CCV of combustion are the cyclic variations of in-cylinder flow, in-cylinder distributions of fuel concentration, temperature and residual gas, and ignition energy. However, it is difficult to measure and analyze these factors in a production engine. This study used an optically accessible single-cylinder engine in which combustion and optical measurements were performed for 45 consecutive cycles. CCVs of the combustion and in-cylinder phenomena were investigated for the same cycle. Using this optically accessible engine, the volume inside the combustion chamber, including the pent-roof region can be observed through a quartz cylinder.
Technical Paper

Analysis and Design Requirements for Tandem TWC Systems

2005-04-11
2005-01-1093
Two-brick (tandem) three-way underfloor catalyst systems provide greater emission reduction performance compared to comparable single brick TWC systems, which contain the same amount of platinum group metal (PGM) for the same catalyst volume. This superior emission reduction performance is speculated to be due to front catalyst activity promoted by heat transfer from reverse exhaust gas flow in the gap between the front and the rear catalyst of tandem TWC system (hereinafter, tandem gap). Furthermore, the following findings were obtained by conducting experiments with model catalysts. 1) During catalyst light-off phase, conversion efficiency strongly depends on activity of the front portion of catalyst where temperature rises rapidly.
Technical Paper

Analysis of Cycle-to-Cycle Variation in a Port Injection Gasoline Engine by Simultaneous Measurement of Time Resolved PIV and PLIF

2020-01-24
2019-32-0552
Cycle-to-cycle variation (CCV) of combustion in low load operation is a factor that may cause various problems in engine operation. Variable valve timing and variable ignition timing are commonly used as a means to reduce this variation. However, due to mountability and cost constraints, these methods are not feasible for use in motorcycle engines. Therefore, development of an engine with minimal CCV without utilizing complicated mechanisms or electronic control is required. CCV of combustion may be caused by fluctuations in in-cylinder flow, air-fuel mixture, temperature, residual gas and ignition energy. In this study, the relationship between CCV of combustion, in-cylinder flow fluctuation and air-fuel mixture fluctuation was the primary focus. In order to evaluate in-cylinder flow fluctuation, Time Resolved Particle Image Velocimetry (TR-PIV) technique was utilized.
X