Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

A Comparison of Some Biodegradable Hydraulic Fluids and Engine Oils

2002-03-19
2002-01-1498
Environmentally friendly fuels and lubricants research on hydraulic fluids, engine oils, greases and industrial applications is of interest to government agencies and manufacturers of equipment, engines and vehicles. The key to increasing the use of renewable natural resources is developing fluids of equivalent performance to petroleum base products, at an acceptable product cost. The well known drawbacks of vegetable oils are oxidation stability and low temperature properties. This study compares commercial fluids and laboratory formulations as to their rheological properties and uses different approaches to solve both the low temperature and the oxidative stability problems. Frictions and wear characteristics of the fluids are evaluated and several fluids are compared laboratory bench tests.
Technical Paper

Development of the Methodology for Quantifying the 3D PM Distribution in a Catalyzed Particulate Filter with a Terahertz Wave Scanner

2014-04-01
2014-01-1573
Optimizing the performance of the aftertreatment system used on heavy duty diesel engines requires a thorough understanding of the operational characteristics of the individual components. Within this, understanding the performance of the catalyzed particulate filter (CPF), and the development of an accurate CPF model, requires knowledge of the particulate matter (PM) distribution throughout the substrate. Experimental measurements of the PM distribution provide the detailed interactions of PM loading, passive oxidation, and active regeneration. Recently, a terahertz wave scanner has been developed that can non-destructively measure the three dimensional (3D) PM distribution. To enable quantitative comparisons of the PM distributions collected under different operational conditions, it is beneficial if the results can be discussed in terms of the axial, radial, and angular directions.
Technical Paper

Physical Size Distribution Characterization of Diesel Particulate Matter and the Study of the Coagulation Process

1978-02-01
780788
Diesel particulate matter in both the diluted and undiluted state is subject to the processes of coagulation, condensation or evaporation, and nucleation which causes continuous changes in its physical characteristics. The Electrical Aerosol Analyzer (EAA) is used to measure the diesel particle size distribution in the MTU dilution tunnel for a naturally aspirated direct-injection diesel engine operated on the EPA 13 mode cycle. The design and development of accurate and repeatable sampling methods using the EAA are presented. These methods involve both steady-state tunnel and bag measurements. The data indicate a bimodal nature within the 0.001 to 1 μm range. The first mode termed the “embroynic mode” has a saddle point between 0.005 to 0.015 μm and the second mode termed the “aggregation mode” lies between .08 to .15 μm for the number distribution.
X