Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

A Comparative Study on the Ignition Mechanism of Multi-site Ignition and Continuous Discharge Strategy

2021-09-21
2021-01-1162
Advanced combustion engines dominate all automotive applications. Future high efficiency clean combustion engines can contribute significantly to sustainable transportation. Effective ignition strategies are studied to enable lean and diluted combustion under considerably high-density mixture and strong turbulences, for improving the efficiency and emissions of future combustion engines. Continuous discharge and multi-site ignition strategies have been proved to be effective to stabilize the combustion process under lean and EGR diluted conditions. Continuous discharge strategy uses a traditional sparkplug with a single spark gap and multiple ignition coil packs. The ignition coil packs operate under a specific time offset to realize a continuous discharge process with a prolonged discharge duration. Multi-site ignition strategy also uses multiple ignition coil packs.
Technical Paper

A Novel Closed Loop Control based on Ionization Current in Combustion Cycle at Cold Start in a GDI Engine

2012-04-16
2012-01-1339
As the invalidation of the oxygen sensor in the initial cycles at cold start, the engine can not operate based on the closed loop control based on oxygen sensor. And it may result in the misfire events and higher hydrocarbon (HC) emissions during this period. To solve this problem, a novel closed loop control based on ionization current in combustion cycle is proposed. The in-cylinder combustion quality is monitored by means of the ion current detection technique; meanwhile, if the misfire event is detected in the combustion cycle, the spark re-ignition is made in the current combustion cycle. In addition, to optimize the combustion and reduce HC emissions during cold start, the fuel injection quantity and ignition timing in the next cycle are adjusted based on the current ion current signal.
Technical Paper

A Study of Crevice HC Mechanism Based on the Transient HC Test Data and the Double Zone Combustion Model

2008-06-23
2008-01-1652
The effectiveness of after-treatment systems depends on the exhaust gas temperature, which is low during cold-start. As a result, Euro III, Euro IV and FTP75 require that the emissions tests include exhaust from the beginning of cold start. It is proved that 50%∼80% of HC and CO emissions are emitted during the cold start and the amount of unburned fuel from the crevices during starting is much higher than that under warmed engine conditions. The piston crevices is the most part of combustion chamber crevices, and results of mathematical simulations show that the piston crevice contribution to HC emissions is expected to increase during cold engine operation. Based on the transient HC test data and the double zone combustion model, this paper presents the study of the crevice HC Mechanism of the first firing cycle at cold start on an LPG SI Engine. A fast-response flame ionization detector (FFID) was employed to measure transient HC emissions of the first firing cycle.
Journal Article

A Study of High Refinement Simulation Prediction on the CAB Development for FMVSS226 Ejection Mitigation Performance

2022-03-29
2022-01-0763
NHTSA released the FMVSS226 Standard in 2011, and defined the requirements for ejection mitigation systems, which limit the linear travel of headform by 100mm. In China regulations, there are similar requirements starting in 2021. Therefore, on the basis of the existing airbag design, adding the rollover protection function becomes a challenge for the airbag development. During the development of the curtain airbag, the cushion design, inflator type, and the fold pattern, all have an important influence on the airbag unfolding direction, the airbag positioning time and the airbag internal pressure, and then significantly affect the occupant protection performance afterwards. In order to reduce the cost and shorten the development time, it is necessary to predict the process of cushion deployment kinematics and the internal pressure of the airbag with high refinement, and based on it to predict and evaluate the FMVSS226 ejection mitigation performance.
Technical Paper

A Study of LPG Lean Burn for a Small SI Engine

2002-10-21
2002-01-2844
This paper presents a study of LPG lean burn in a motorcycle SI engine. The lean burn limits are compared by several ways. The relations of lean burn limit with the parameters, such as engine speed, compression ratio and advanced spark ignition etc. are tested. The experimental results show that larger throttle opening, lower engine speed, earlier spark ignition timing, larger electrode gap and higher compression ratio will extend the lean burn limit of LPG. The emission of a LPG engine, especially on NOx emission, can be significantly reduced by means of the lean burn technology.
Technical Paper

A Study on Combustion and Emission Characteristics of GDI Engine for HEV at Quick Start

2014-10-13
2014-01-2709
Gasoline Direct Injection (GDI) engines have attracted interest as automotive power-plants because of their potential advantages in down-sizing, fuel efficiency and in emissions reduction. However, GDI engines suffer from elevated unburned hydrocarbon (HC) emissions during start up process, which are sometimes worsened by misfires and partial burns. Moreover, as the engine is cranked to idle speed quickly in HEVs (Hybrid Electric Vehicle), the transients of quick starts are more dramatically than that in traditional vehicle, which challenge the optimization of combustion and emissions. In this study, test bench had been set up to investigate the GDI engine performances for ISG (Integrated Starter and Generator) HEVs during start up process. Based on the test system, cycle-controlled of the fuel injection mass, fuel injection timing and ignition timing can be obtained, as well as the cycle-resolved measurement of the HC concentrations and NO emissions.
Technical Paper

A Study on the Combustion Characteristics of a Methane Jet Flame in a Pressurized Hot Vitiated Co-flow

2019-01-15
2019-01-0082
This work presents the study of the methane jet flame in a pressurized vitiated co-flow burner (PVCB). The lift-off length and the stabilization of the methane jet flame under different environment pressures, co-flow temperatures, co-flow rates and jet velocities have been studied, and a chemical numerical simulation based on Gri-mech 3.0 was analyzed as well. The results could provide theoretical supports for the research of natural gas engine combustion stabilization control to increase its thermal efficiency. The experimental results show that the lift-off length decreases obviously (104.22mm to76.14mm) with the increase of the environment pressure (1to1.5bar, 1073K) and temperature (119.34mm to 43.74mm from 1058K to 1118K, 1bar), meanwhile, it also increases with the increment of the co-flow rate and jet velocity.
Technical Paper

A Study on the Factors Affecting Heated Wall Impinging Characteristics of SCR Spray

2011-04-12
2011-01-1311
Many studies show that under diesel engine operating conditions, SCR reductant sprays will impinge on the wall of exhaust pipes. In order to understand this impinging process of SCR reductant spray, and to analyze what factors affect it, a test bench was set up by means of high speed video camera. At atmospheric pressure, SCR spray was injected on a heated metal wall, the impacts of wall temperature, injection pressure, injection height and angle on developing characteristics of SCR reductant spray after impinging on the heated wall have been researched and analyzed. The results show that the heated wall temperature has a great impact on the spray developing process, when wall temperature is lower than 405K, after water evaporated the crystallized urea will remain on the wall to block exhaust pipes. When wall temperature is higher, the atomization and evaporation of SCR reductant spray will be better, and the hydrolysis process of urea will be faster.
Technical Paper

A Study on the Hole-to-Hole Spray Variation Based on Nozzle Internal Structure

2013-04-08
2013-01-1611
Spray behavior is regarded as one of main factors which influence engine performance, fuel consumption and emissions for diesel engine. In practice, spray characteristics from each orifice from a multi-hole nozzle are normally arranged symmetrically, while the hole-to-hole spray variation is unavoidable. This variation will cause spatial uneven distribution of spray and combustion degrade, which will be no longer inconsiderable in face of the more and more stringent emission rules. In this paper, two methods including spray macro-characteristics experiment and separated fuel mass measurement are employed to test the hole-to-hole spray variation of two six-hole symmetric VCO injectors of different brands, and experiments are operated under different conditions including different injection pressures, back pressures and injection durations.
Technical Paper

Accurate Reduction of Combustion Chemistry Mechanisms Using a Multi-zone Model

2008-04-14
2008-01-0844
Automated mechanism reduction is important in enabling the use of kinetics data in engineering design. In this work, we report on a mechanism-reduction technique that serves as a practical tool for automated mechanism reduction when applied to engine-simulation, with particular focus on compression-ignition engines. For this application, a multi-zone engine model has been developed, which can capture the stratification in the engine due to crevice and boundary-layer cooling effects. The multi-zone model serves as the workhorse for the mechanism-reduction algorithm. The reduction process is designed to operate on model-solution data from a parametric matrix of runs, in which the multi-zone model is run under different conditions. A more accurate reduction can therefore be achieved while accounting for spatial variations in the engine, temporal variations over the compression cycle, and variations in operating conditions.
Technical Paper

Accurate and Dynamic Accounting of Fuel Composition in Flame Propagation During Engine Simulations

2016-04-05
2016-01-0597
A methodology has been implemented to calculate local turbulent flame speeds for spark ignition engines accurately and on-the-fly in 3-D CFD modeling. The approach dynamically captures fuel effects, based on detailed chemistry calculations of laminar flame speeds. Accurately modeling flame propagation is critical to predicting heat release rates and emissions. Fuels used in spark ignition engines are increasingly complex, which necessitates the use of multi-component fuels or fuel surrogates for predictive simulation. Flame speeds of the individual components in these multi-component fuels may vary substantially, making it difficult to define flame speed values, especially for stratified mixtures. In addition to fuel effects, a wide range of local conditions of temperature, pressure, equivalence ratio and EGR are expected in spark ignition engines.
Technical Paper

Active Plasma Probing for Lean Burn Flame Detection

2023-04-11
2023-01-0293
Combustion diagnostics of highly diluted mixtures are essential for the estimation of the combustion quality, and control of combustion timing in advanced combustion systems. In this paper, a novel fast response flame detection technique based on active plasma is introduced and investigated. Different from the conventional ion current sensing used in internal combustion engines, a separate electrode gap is used in the detecting probing. Further, the detecting voltage across the electrode gap is modulated actively using a multi-coil system to be slightly below the breakdown threshold before flame arrival. Once the flame front arrives at the probe, the ions on the flame front tend to decrease the breakdown voltage threshold and trigger a breakdown event. Simultaneous electrical and optical measurements are employed to investigate the flame detecting efficacy via active plasma probing under both quiescent and flow conditions.
Technical Paper

An Automated Workflow for Efficient Conjugate Heat Transfer Analysis of a Diesel Engine

2021-04-06
2021-01-0402
The internal combustion engine’s performance is affected by in-cylinder combustion processes and heat transfer rates through the combustion chamber walls. Hot spots may affect the reliability and durability of the engine components. Design of efficient and effective coolant systems requires accurate accounting of the heat fluxes into and out of the solid parts during the engine operation. The need to assess the engine’s performance early in the design process has motivated the use of a computational approach to predict such data. A more accurate representation of the engine’s operation is obtained by coupling the thermal, flow, and combustion analysis of the various components, such as the combustion chamber, ports, engine block, and its cooling system. Typically, a stand-alone CFD simulation does not capture the complex nature of the problem, and the manual transfer of data between multiple analyses may lead to an onerous or error-prone workflow requiring multiple user interventions.
Technical Paper

Analysis of Gear Rattle Noise and Vibration Characteristics Using Relative Approaches

2016-04-05
2016-01-1121
Noise signals of the driver’s right ear include those of engine, environment, chassis dynamometer, loaded gears and unloaded gears when they are recorded in full vehicle on chassis dynamometer in semi-anechoic room. Gear rattle noise signals of the driver’s right ear caused by unloaded gear pairs can’t be identified or quantified directly. To solve the problems, relative approaches are used to identify and quantify the gear rattle noise signals. Firstly, the rattle noise signals of the driver’s right ear are filtered by human ear characteristic functions and steady noise signals are extracted by regression and smoothing processes. The noise signals are regressed at 200ms interval in the hearing critical frequency bands and smoothed in the flanking frequencies. Then, the noise relative approaches are obtained by subtracting the steady noise signals from the filtered noise signals, which are the transient noise signals of the unloaded gear pairs inducing the rattle noise.
Journal Article

Applying Detailed Kinetics to Realistic Engine Simulation: the Surrogate Blend Optimizer and Mechanism Reduction Strategies

2010-04-12
2010-01-0541
Designing advanced, clean and fuel-efficient engines requires detailed understanding of fuel chemistry. While knowledge of fuel combustion chemistry has grown rapidly in recent years, the representation of conventional fossil fuels in full detail is still intractable. A popular approach is to use a model-fuel or surrogate blend that can mimic various characteristics of a conventional fuel. Despite the use of surrogate blends, there remains a gap between detailed chemistry and its utilization in computational fluid dynamics (CFD), due to the prohibitive computational cost of using thousands of chemical species in large numbers of computational cells. This work presents a set of software tools that help to enable the use of detailed chemistry in representing conventional fuels in CFD simulation. The software tools include the Surrogate Blend Optimizer and a suite of automated mechanism reduction strategies.
Technical Paper

Assisted Steering Control for Distributed Drive Electric Vehicles Based on Combination of Driving and Braking

2023-10-30
2023-01-7012
This paper presents a low-speed assisted steering control approach for distributed drive electric vehicles. When the vehicle is driven at low speed, the braking of the inner-rear wheel is combined with differential drive to reduce the turning radius. A hierarchical control structure has been designed to achieve comprehensive control. The upper-level controller tracks the expected yaw rate and vehicle side-slip angle through a Linear Quadratic Regulator (LQR) algorithm. The desired yaw rate and vehicle side-slip angle are obtained according to the reference vehicle model, which can be regulated by the driver through the accelerator pedal. The lower-level controller uses a quadratic programming algorithm to distribute the yaw moment and driving moment to each wheel, aiming to minimize tire load rate variance.
Technical Paper

Auto-ignition Characteristics of Lubricant Droplets under Hot Co-Flow Atmosphere

2018-09-10
2018-01-1807
It has been revealed by researches that lubricant properties have a great effect on the low-speed pre-ignition (LSPI) frequency in downsizing turbocharged direct-injection engines which are developed for better fuel economy. Droplets of lubricant or lubricant-gasoline mixture are considered to be the potential pre-ignition sources. Those droplets fly into the combustion chamber and ignite the gasoline-air mixture. To study lubricant droplets fundamentally, a novel set of droplet auto-ignition system is designed based on a Dibble Burner for this experiment. Influences of metallic additive contents, viscosities, lubricant diluted with gasoline and waste lubricant on the ignition delay of droplets are investigated by testing 12 groups of lubricants or lubricant-gasoline mixture. The equivalent diameter of each droplet generated by micro-syringes is around 2.1 mm. The co-flow temperature varies from 1123 K to 1223 K, and the experiments are carried out at atmospheric pressure.
Technical Paper

Automated Test Case Generation and Virtual Assessment Framework for UN Regulation on Automated Lane Keeping Systems

2021-04-06
2021-01-0870
Validation of highly automated or autonomous vehicles is nowadays still a major challenge for the automotive industry. Furthermore, the homologation of ADAS/AD vehicles according to global regulations is getting more essential for their safe development and deployment around the world. In order to assure that the autonomous driving function is able to cope with the huge number of possible situations during operation, comprehensive testing of the functions is required. However, conventional testing approaches such as driving distance-based validation approach in the real world, can be time- and cost-consuming. Therefore, a scenario-based virtual validation and testing method is considered to be a proper solution. In this paper, we propose a virtual assessment framework using a fully automated test case generation method. This framework is embedded into the continuous development and validation process.
Technical Paper

Boosted Current Spark Strategy for Lean Burn Spark Ignition Engines

2018-04-03
2018-01-1133
Spark ignition systems with the capability of providing spark event with either higher current level or longer discharge duration has been developed in recent years to help IC engines towards clean combustion with higher efficiency under lean/diluted intake charge. In this research, a boosted current spark strategy was proposed to investigate the effect of spark discharge current level and discharge duration on the combustion process. Firstly, the discharge characteristics of a boosted current spark system were tested with a traditional spark plug under crossflow conditions, and results showed that the spark channel was more stable, and was stretched much longer when the discharge current was boosted. Then the boosted current strategy was used in a spark ignition engine operating under lean conditions. Boosted current was added to the spark channel with different timing, duration, and current levels.
Technical Paper

Carbon Emission Research of Taxi Fleet from ICEV to BEV (Shanghai Case)

2021-01-22
2021-01-5009
Based on the life cycle assessment method, this paper takes Shanghai taxi fleet as the research objective (traditional fuel vehicle (ICEV) and battery electric vehicle (BEV)). Under the condition of Shanghai energy structure, and combined with the actual application scenario of Shanghai taxi fleet, the study and prediction of carbon emission is carried out from three stages of manufacture, use and recycle. The research results show that: in the life cycle, under the current energy structure and battery technology of the taxi fleet in Shanghai, the carbon emission of BEV and ICEV will be at the same level at the mileage of 50,000 km. With the adjustment of energy structure, the progress of battery technology and the increase of the proportion of battery electric taxi fleet, the overall carbon emission of Shanghai taxi fleet will be reduced significantly.
X