Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Octane Requirement of a Turbocharged Spark Ignition Engine in Various Driving Cycles

2016-04-05
2016-01-0831
High octane fuel (e.g., E85) effectively suppresses knock, but the octane ratings of such fuels are much above what is required under normal driving conditions. It is important, therefore, to understand the octane requirement of the engine itself over its full range of operation and apply that knowledge to practical driving cycles to understand fuel octane utilization, especially of a turbocharged engine. By carefully defining knock limits, the octane requirement of a 2-liter turbocharged spark ignition engine was experimentally quantified over a wide range of loads and speeds using PRF blends and gasoline-ethanol blends. Utilizing this knowledge and engine-in-vehicle simulations, the octane requirements of various driving cycles were calculated for a passenger car and a medium duty truck model.
Journal Article

Optimal Use of Ethanol in Dual Fuel Applications: Effects of Engine Downsizing, Spark Retard, and Compression Ratio on Fuel Economy

2016-04-05
2016-01-0786
Turbocharging, increasing the compression ratio, and downsizing a spark-ignition engine are well known strategies for improving vehicle fuel economy. However, such strategies increase the likelihood of engine knock due to higher in-cylinder pressures and temperatures. A high octane fuel, such as E85, effectively suppresses knock but is not necessary in most parts of the engine operating map. To better utilize a high octane fuel, dual fuel injection has been suggested where high octane fuel is injected only when the engine is about to knock. However, the effects of downsizing, retarding spark timing, and increasing compression ratio on dual fuel applications are not well understood. To investigate these questions, GT-power simulations along with engine experiments and engine-in-vehicle simulations for a passenger vehicle and a medium-duty truck were conducted.
Technical Paper

Real World Performance of an Onboard Gasoline/Ethanol Separation System to Enable Knock Suppression Using an Octane-On-Demand Fuel System

2018-04-03
2018-01-0879
Higher compression ratio and turbocharging, with engine downsizing can enable significant gains in fuel economy but require engine operating conditions that cause engine knock under high load. Engine knock can be avoided by supplying higher-octane fuel under such high load conditions. This study builds on previous MIT papers investigating Octane-On-Demand (OOD) to enable a higher efficiency, higher-boost higher compression-ratio engine. The high-octane fuel for OOD can be obtained through On-Board-Separation (OBS) of alcohol blended gasoline. Fuel from the primary fuel tank filled with commercially available gasoline that contains 10% by volume ethanol (E10) is separated by an organic membrane pervaporation process that produces a 30 to 90% ethanol fuel blend for use when high octane is needed. In addition to previous work, this paper combines modeling of the OBS system with passenger car and medium-duty truck fuel consumption and octane requirements for various driving cycles.
X