Refine Your Search

Topic

Search Results

Technical Paper

1-D Model of Radial Turbocharger Turbine Calibrated by Experiments

2002-03-04
2002-01-0377
The 1-D model of a radial centripetal turbine was developed for engine simulation to generalize and extrapolate the results of experiments to high pressure ratio or off-design velocity ratio using calibrated tuning coefficients. The model concerns a compressible dissipative flow in a rotating channel. It considers both bladed or vaneless turbine stators and a twin-entry stator for exhaust pulse manifolds. The experiments were used to find values of all model parameters (outlet flow angles, all loss coefficients including an impeller incidence loss) by an original method using repeated regression analysis. The model is suitable for the prediction of a turbocharger turbine operation and its optimization in 1-D simulation codes.
Technical Paper

1-D Model of Roots Type Supercharger

2013-04-08
2013-01-0927
This paper introduces research work on 1-D model of Roots type supercharger with helical gears using 1-D simulation tool. Today, passenger car engine design follows approach of downsizing and the reduction of number of engine cylinders. Superchargers alone or their combination with turbochargers can fulfill low-end demands on engine torque for such engines. Moreover, low temperature combustion of lean mixture at low engine loads becomes popular (HCCI, PCCI) requiring high boost pressure of EGR/fresh air mixture at low exhaust gas temperature, which poses too high demands on turbocharger efficiency. The main objective of this paper is to describe Roots charger features and to amend Roots charger design.
Technical Paper

A Simple Physical Model of ICE Mechanical Losses

2011-04-12
2011-01-0610
The current state-of-the-art offers two extremes of engine mechanical loss models: pure empirical models, using, e.g., regression models based on experimental results, and full-sized 3-D hydrodynamic friction models, solving Reynolds-like lubrication equations for complicated geometry of piston ring/cylinder liner or load-distorted shapes of crankshaft/connecting rod bearings and journals. Obviously, the former method cannot be reliably extrapolated while the latter is too complicated, especially for the early stage of design. The aim of the current paper is describing the development and experimental calibration of the physical cranktrain model for FMEP prediction, based on simplified phenomenological model of mixed friction. The model uses simply defined shapes of Stribeck curves (friction coefficient) in dependence on Sommerfeld number, i.e., on effective sliding velocity, oil viscosity, dimension scaling factor and the normal force load.
Technical Paper

Air System Conception for a Downsized Two-Stroke Diesel Engine

2012-04-16
2012-01-0831
This paper introduces a research work on the air loop system for a downsized two-stroke two-cylinder diesel engine conducted in framework of the European project dealing with the POWERtrain for Future Light-duty vehicles - POWERFUL. The main objective was to determine requirements on the air management including the engine intake and exhaust system, boosting devices and the EGR system and to select the best possible technical solution. With respect to the power target of 45 kW and scavenging demands of the two-cylinder two-stroke engine with a displacement of 0.73 l, a two-stage boosting architecture was required. Further, to allow engine scavenging at any operation, supercharger had to be integrated in the air loop. Various air loop system layouts and concepts were assessed based on the 1-D steady state simulation at full and part load with respect to the fuel consumption.
Technical Paper

Calibration and Results of a Radial Turbine 1-D Model with Distributed Parameters

2011-04-12
2011-01-1146
The physical 1-D model of a radial turbine consists in a set of gas ducts featuring total pressure and/or temperature changes and losses. This model has been developed using the basic modules of generalized 1-D manifold solver. The tools for it were presented at SAE 2008 and 2009 World Congresses. The model published before is amended by a semi-empiric mechanical loss and windage loss modules. The instantaneous power of a turbine is integrated along the rotating impeller channel using Euler turbine theorem, which respects the local unsteadiness of mass flow rate along the channel. The main aim of the current contribution is to demonstrate the use of measured turbine maps for calibration of unsteady turbine model for different lay-outs of turbine blade cascades. It is important for VG turbines for the optimal matching to different engine speeds and loads requirements.
Technical Paper

Combining Thermodynamics and Design Optimization for Finding ICE Downsizing Limits

2014-04-01
2014-01-1098
The mass and overall dimensions of massively downsized engines for very high bmep (up to 35 bar) cannot be estimated by scaling of designs already available. Simulation methods coupling different levels of method profoundness, as 1-D methods, e.g., GT Suite/GT Power with in-house codes for engine mechanical efficiency assessment and preliminary design of boosting devices (a virtual compressor and a turbine), were used together with optimization codes based on genetic algorithms. Simultaneously, the impact of optimum cycle on cranktrain components dimensions (especially cylinder bore spacing), mass and inertia force loads were estimated since the results were systematically stored and analyzed in Design Assistance System DASY, developed by the authors for purposes of early-stage conceptual design. General thermodynamic cycles were defined by limiting parameters (bmep, burning duration, engine speed and turbocharger efficiency only).
Journal Article

Comparison of Lumped and Unsteady 1-D Models for Simulation of a Radial Turbine

2009-04-20
2009-01-0303
The physical 1-D model of a radial turbine consists of a set of gas ducts featuring total pressure and/or temperature changes and losses. Therefore, the wave propagation and filling/emptying plays a significant role if a turbine is subjected to unsteady gas flow. The results of unsteady turbine simulation using the basic modules of generalized 1-D manifold solver in GT Power are demonstrated. The turbine model calibration parameters can be identified by means of 1-D steady model used in optimization code loop. The examples of model results are compared to steady flow map predictions of turbine efficiency and engine pumping loop work. The model may be used for prediction of turbine data in out-of-design points as presented in the paper. The other important role of a model, however, is an accurate evaluation of turbine parameters from pressure and speed measurements at an engine in operation.
Technical Paper

Determination and Representation of Turbocharger Thermodynamic Efficiencies

2016-04-05
2016-01-1042
The boost pressure demands call for high efficiency turbochargers. Perfect matching to an engine and controlling in operation is a prerequisite, especially if highly diluted mixture is used. The main impact on four-stroke engine efficiency is performed via gas exchange work, Correct turbocharger representation, usually performed by maps, should be delivered by turbocharger manufacturers and applied in simulation optimizations. The robust calibration methods are required for fast-running real time simulations used for model-based control. The paper clarifies the relations between apparent and real turbocharger isentropic efficiencies at steady-flow testbed and their impact on engine cycle optimization by simulation. Simple procedures excluding the impact of heat transfer inside a turbocharger are described. The described methods are based on the use of overall turbocharger efficiency.
Technical Paper

Development of a Pre-Chamber Ignition System for Light Duty Truck Engine

2018-04-03
2018-01-1147
In this article the development of a combustion system with a fuel-scavenged pre-chamber is described. Such a system is commonly used in large-bore engines operated with extremely lean mixtures. The authors implemented the scavenged pre-chamber into a light duty truck-size engine with a bore of 102 mm. The lean burn strategy is intended to achieve very low nitrogen oxide (NOx) emissions at low load. At full load a stoichiometric mixture strategy is applied to achieve sufficient power density while simultaneously enabling the use of a relatively simple three-way catalytic converter for exhaust gas aftertreatment. This work outlines the pre-chamber design features and introduces the results of an experimental investigation of the effect of pre-chamber ignition on a single cylinder testing engine.
Technical Paper

Dual Fuel Combustion Model for a Large Low-Speed 2-Stroke Engine

2016-04-05
2016-01-0770
A quasi-dimensional dual fuel combustion model is proposed for a large 2-stroke marine engine. The introduced concept accounts for both diffusion combustion of the liquid pilot fuel and the flame front propagation throughout the gaseous premixed charge. For the pilot fuel case a common integral formulation defines the ignition delay whereas a time scale approach is incorporated for the combustion progress modeling. In order to capture spatial differences given by the scavenging process and the admission of the gaseous fuel, the cylinder volume is discretized into a number of zones. The laws of conservation are applied to calculate the thermodynamic conditions and the fuel concentration distribution. Subsequently, the ignition delay of the gaseous fuel-air mixture is determined by the use of tabulated kinetics and the ensuing oxidation is described by a flame velocity correlation.
Technical Paper

Dynamic Optimization of the E-Vehicle Route Profile

2016-04-05
2016-01-0156
Current vehicles, especially the electric ones, are complex mechatronic devices. The pickup vehicles of small sizes are currently used in transport considerably. They often operate within a repeating scheme of a limited variety of tracks and larger fleets. Thanks to mechatronic design of vehicles and their components and availability of high capacity data connection with computational centers (clouds), there are many means to optimize their performance, both by planning prior the trip and recalculations during the route. Although many aspects of this opportunity were already addressed, the paper shows an approach developed to further increase the range of e-vehicle operation. It is based on prior information about the route profile, traffic density, road conditions, past behaviour, mathematical models of the route, vehicle and dynamic optimization. The most important part of the procedure is performed in the cloud, using both computational power and rich information resources.
Technical Paper

Fuel Injection Process Computations Using the Eulerian Multidimensional Model

2005-04-11
2005-01-1243
Diesel fuel injection process calculations have been performed by means of in-house developed mathematical models. An Eulerian multidimensional code for in-cylinder two-phase flow computations is used in conjunction with a hydrodynamic one-dimensional model of a fuel injection system. The multidimensional model comprehends all basic processes, which play a role in spray formation. The compressible gaseous flow with transport of species is solved together with the flow of dispersed liquid phase using the Eulerian reference frame for both phases. The two-way coupling between the phases in mass, momentum, and energy balances is considered. A detailed description of liquid phase is present, taking into account drop size distribution in terms of the multi-continua approach. The hydrodynamic model capable of simulating common fuel injection systems is used for the rate-of-injection computations to provide realistic boundary conditions to the spray model.
Technical Paper

Investigation of Radial Turbocharger Turbine Characteristics under Real Conditions

2009-04-20
2009-01-0311
The paper deals with investigation of flow characteristics of turbocharger turbine under real operating conditions on engine by means of combination of experimental data and advanced 1-D code for combustion engine simulation. Coupling simulations tools with the results of measurements provides the engineers with data which are difficult or impossible to measure. For instance by means of a three pressure analysis (TPA) applicable on engine cylinder the engineers can obtain burn rate, valve flow and residual gas compound from measured pressure traces in cylinder and at inlet and outlet ports. A method for turbocharger turbine on engine identification similar in principle to the three pressure analysis has been applied on radial turbine with variable geometry. A new computational module has been developed to allow identification of instantaneous flow and efficiency characteristics of the turbine.
Technical Paper

LES Simulation of Direct Injection SI-Engine In-Cylinder Flow

2012-04-16
2012-01-0138
The present paper deals with the application of the LES approach to in-cylinder flow modeling. The main target is to study cycle-to-cycle variability (CCV) using 3D-CFD simulation. The engine model is based on a spark-ignited single-cylinder research engine. The results presented in this paper cover the motored regime aiming at analysis of the cycle-resolved local flow properties at the spark plug close to firing top dead center. The results presented in this paper suggest that the LES approach adopted in the present study is working well and that it predicts CCV and that the qualitative trends are in-line with established knowledge of internal combustion engine (ICE) in-cylinder flow. The results are evaluated from a statistical point of view based on calculations of many consecutive cycles (at least 10).
Technical Paper

LES Simulation of Flame Propagation in a Direct-Injection SI-Engine to Identify the Causes of Cycle-to-Cycle Combustion Variations

2013-04-08
2013-01-1084
A Large-Eddy-Simulation (LES) approach is applied to the calculation of multiple SI-engine cycles in order to study the causes of cycle-to-cycle combustion variations. The single-cylinder research engine adopted in the present study is equipped with direct fuel-injection and variable valve timing for both the intake and exhaust side. Operating conditions representing cases with considerably different scatter of the in-cylinder pressure traces are selected to investigate the causes of the cycle-to-cycle combustion variations. In the simulation the engine is represented by a coupled 1D/3D-CFD model, with the combustion chamber and the intake/exhaust ports modeled in 3D-CFD, and the intake/exhaust pipework set-up adopting a 1D-CFD approach. The adopted LES flow model is based upon the well-established Smagorinsky approach. Simulation of the fuel spray propagation process is based upon the discrete droplet model.
Journal Article

Modeling Cycle-to-Cycle Variations in 0-D/1-D Simulation by Means of Combustion Model Parameter Perturbations based on Statistics of Cycle-Resolved Data

2013-04-08
2013-01-1314
The presented paper deals with a methodology to model cycle-to-cycle variations (CCV) in 0-D/1-D simulation tools. This is achieved by introducing perturbations of combustion model parameters. To enable that, crank angle resolved data of individual cycles (pressure traces) have to be available for a reasonable number of engine cycles. Either experimental data or 3-D CFD results can be applied. In the presented work, experimental data of a single-cylinder research engine were considered while predicted LES 3-D CFD results will be tested in the future. Different engine operating points were selected - both stable ones (low CCV) and unstable ones (high CCV). The proposed methodology consists of two major steps. First, individual cycle data have to be matched with the 0-D/1-D model, i.e., combustion model parameters are varied to achieve the best possible match of pressure traces - an automated optimization approach is applied to achieve that.
Technical Paper

New Approach to Turbocharger Optimization using 1-D Simulation Tools

2006-04-03
2006-01-0438
The paper deals with the investigation of turbocharger optimization procedures using amended 1-D simulation tools. The proposed method uses scaled flow rate/effficiency maps for different sizes of a radial turbine together with a fictitious compressor map. The compressor pressure ratio/efficiency map depends on compressor circumference velocity only and predicts the both compressor specific power and achievable efficiency. At the first stage of optimization, it avoids the problems of reaching choking/surge limits. It enables the designer to find a suitable turbine type under realistic unsteady conditions (pressure pulses in exhaust manifold) concerning turbine flow area. Once the optimization of turbine/compressor impeller diameters is finished, the specific compressor map is selected. The proposed method provides the fast way to the best solution even for the case of a VGT turbine. Additional features have been developed for the representation of scaled turbine and compressor maps.
Technical Paper

New ways of fluid flow control in automobiles: Experience with exhaust gas aftertreatmetn control

2000-06-12
2000-05-0299
Flow control by fluidic devices - without moving parts - offers advantages of reliability and low cost. As an example of their automobile application based on authors'' long-time experience the paper describes a fluidic valve for switching exhaust gas flow in a NOx absorber into a by-pass during regeneration phase. The unique feature here is the fluidic valve being of monostable and of axisymmetric design, integrated into the absorber body. After development in aerodynamic laboratory, the final design was tested on engine test stand and finally in a car. This proved that the performance under high temperature and pulsation existing in exhaust systems is reliable and promising. Fluidic valves require, however, close matching with aerodynamic load. To optimize the exhaust system layout for the whole load-speed range and reaching minimum counter- pressure, both the components of exhaust system and control strategy have to be properly adopted.
Technical Paper

Physical Model of a Twin-scroll Turbine with Unsteady Flow

2015-04-14
2015-01-1718
The paper describes a way to a 1-D central streamline model of a radial turbine flow, suitable for twin-scroll description and based on approximation of real physics of flow mixing and energy transformation. The original 1-D model of a single scroll turbine, described earlier in numerous SAE papers, has been amended by twin-scroll nozzles (both vaneless or with blade cascades) and mixing of individual partitions of flows upstream of additional vaneless nozzle and an impeller. This model is transferable to 1-D unsteady simulations as it is (i.e., using quasi-steady approach) or using 1-D unsteady solvers. It has suitable features even for more detailed description of turbine flows and energy transformation. The first results of pulse influence on turbine maps delivered expected results consisting of complicated interaction between individual losses.
Technical Paper

Simulation of Pre-Chambers in an Engine Combustion Chamber Using Available Software

2003-03-03
2003-01-0373
The presented work deals with possibilities of modeling divided combustion chamber using available 1-D/0-D software. It is usable for indirect injection diesel engines, gas SI engines with pre-chambers for very lean mixture ignition, etc. The model solves all layouts where main cylinder is connected to additional volumes. This connection allows for heat and energy transfer between connected parts. The application of standard ROHR functions (Wiebe, etc.) which are normalized to constant fuel mass is limited. A new marker gas concentration algorithm is proposed for the use of empiric ROHR functions. The standard approach (without proposed algorithm) was tested modeling large-bore gas SI engine with pre-chamber where the mixture is ignited and experimental direct injection hydrogen one-cylinder engine with an additional volume between fuel injector and the cylinder itself to protect the injector from very high pressures and temperatures in the cylinder.
X