Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Finite Element Model of Region-Specific Response for Mild Diffuse Brain Injury

2009-11-02
2009-22-0007
It is well known that rotational loading is responsible for a spectrum of diffuse brain injuries spanning from concussion to diffuse axonal trauma. Many experimental studies have been performed to understand the pathological and biomechanical factors associated with diffuse brain injuries. Finite element models have also been developed to correlate experimental findings with intrinsic variables such as strain. However, a paucity of studies exists examining the combined role of the strain-time parameter. Consequently, using the principles of finite element analysis, the present study introduced the concept of sustained maximum principal strain (SMPS) criterion and explored its potential applicability to diffuse brain injury. An algorithm was developed to determine if the principal strain in a finite element of the brain exceeded a specified magnitude over a specific time interval.
Technical Paper

An Operational Definition of Small Overlap Impact for Published NASS Data

2011-04-12
2011-01-0543
The purpose of the study was to identify all small overlap impacts using published coded NASS-CDS data. Three sets of criteria were used: CDC measurements; crush profiles for frontal impacts; and crush profiles for oblique side impacts to the fender component. All criteria were applied to passenger and non-passenger cars and their different vehicle class sizes. Data were analyzed based on fatalities and different levels of MAIS trauma. The overall data set based on CDC codes for 2005 to 2008 NASS-CDS data had 9,206 MAIS=0; 13,522 MAIS=1-2; 3,600 MAIS=3-6; 1,092 MAIS=7; and 961 fatal cases. For the weighted ensemble, these data were: 5,800,295; 4,324,773; 269,042; 219,481; and 44,906 cases, respectively. However, these cases reduced to 1071, 1468, 364, 82, and 87 raw cases with the application of the CDC criteria for frontal impacts.
Technical Paper

Analysis of Force Mitigation by Boots in Axial Impacts using a Lower Leg Finite Element Model

2020-03-31
2019-22-0011
Lower extremity injuries caused by floor plate impacts through the axis of the lower leg are a major source of injury and disability for civilian and military vehicle occupants. A collection of PMHS pendulum impacts was revisited to obtain data for paired booted/unbooted test on the same leg. Five sets of paired pendulum impacts (10 experiments in total) were found using four lower legs from two PMHS. The PMHS size and age was representative of an average young adult male. In these tests, a PMHS leg was impacted by a 3.4 or 5.8 kg pendulum with an initial velocity of 5, 7, or 10 m/s (42-288 J). A matching LS-DYNA finite element model was developed to replicate the experiments and provide additional energy, strain, and stress data. Simulation results matched the PMHS data using peak values and CORA curve correlations. Experimental forces ranged between 1.9 and 12.1 kN experimentally and 2.0 and 11.7 kN in simulation.
Technical Paper

Biodynamics of the Total Human Cadaveric Cervical Spine

1990-10-01
902309
Spinal trauma produced from motor vehicle accidents, diving accidents, or falls occur at high rates of loading. This study was undertaken to reproduce clinically relevant cervical spine injuries under controlled conditions. Six isolated head - T2 human cadaveric preparations were tested using an electrohydraulic piston actuator at loading rates from 295 to 813 cm/sec. The Hybrid III head-neck was tested similarly at rates from 401 to 683 cm/sec. The input forces for specimen tests were of higher magnitude and shorter duration than the distally measured forces. In contrast, the Hybrid III head-neck revealed similar magnitude and duration force traces from input to output. The specimen preparations were analyzed kinematically at 1200 frames/sec with 20 to 30 retroreflective targets fixed to each level of the cervical spine. With this technique it is possible to temporally follow cervical damage as a function of applied force.
Technical Paper

Biomechanical Analysis of Tractor Induced Head Injury

1994-09-01
941726
Head injury is a serious threat to lives of people working around farm machinery. The consequence of head injuries are costly, paralytic, and often fatal. Clinical and biomechanical data on head injuries are reviewed and their application in the analysis of head injury risk associated with farm tractor discussed. A significant proportion of tractor-related injuries and deaths to adults, as well as children, is due directly or indirectly to head injury. An improved injury reporting program and biomechanical studies of human response to tractor rollover, runover, and falls, are needed to understand mechanisms of the associated head injury.
Technical Paper

Biomechanical and Injury Response to Posterolateral Loading From Torso Side Airbags

2010-11-03
2010-22-0012
This study characterized thoracoabdominal response to posterolateral loading from a seat-mounted side airbag. Seven unembalmed post-mortem human subjects were exposed to ten airbag deployments. Subjects were positioned such that the deploying airbag first contacted the posterolateral thorax between T6 and L1 while stationary (n = 3 x 2 aspects) or while subjected to left lateral sled impact at ΔV = 6.7 m/s (n = 4). Chestband contours were analyzed to quantify deformation direction in the thoracic x-y plane (zero degrees indicating anterior and 180° indicating posterior), magnitude, rate, and viscous response. Skeletal injuries were consistent with posterolateral contact; visceral injuries consisted of renal (n = 1) or splenic (n = 3) lacerations. Deformation direction was transient during sled impact, progressing from 122 ± 5° at deformation onset to 90° following maximum deflection. Angles from stationary subjects progressed from 141 ± 9° to 120°.
Technical Paper

Biomechanics of Human Occupants in Simulated Rear Crashes: Documentation of Neck Injuries and Comparison of Injury Criteria

2000-11-01
2000-01-SC14
The objective of this study was to subject small female and large male cadavers to simulated rear impact, document soft-tissue injuries to the neck, determine the kinematics, forces and moments at the occipital condyles, and evaluate neck injury risks using peak force, peak tension and normalized tension-extension criteria. Five unembalmed intact human cadavers (four small females and one large male) were prepared using accelerometers and targets at the head, T1, iliac crest, and sacrum. The specimens were placed on a custom- designed seat without head restraint and subjected to rear impact using sled equipment. High-speed cameras were used for kinematic coverage. After the test, x-rays were obtained, computed tomography scans were taken, and anatomical sections were obtained using a cryomicrotome. Two female specimens were tested at 4.3 m/s (mean) and the other two were tested at 6.8 m/s (mean), and one large male specimen was subjected to 6.6 m/s velocity.
Technical Paper

Biomechanics of Inertial Head-Neck Trauma: Role of Cervical Components

2002-03-19
2002-01-1445
Inertial loading of the head-neck complex occurs in rear impacts wherein the head and neck of the occupant are initially subjected to rearward forces. Epidemiological evidence exists to demonstrate the significance and societal impact of these injuries [4]. From a clinical perspective, trauma secondary to inertial loads belongs to the lower end of the Abbreviated Injury Scale, and no specific diagnostic techniques are available to quantitatively document the injury. Furthermore, identification of the mechanisms of injury and derivation of injury thresholds are limited. In fact, there is a paucity of literature focusing on the reproduction of rear impact-induced neck injuries due to a single-event rear impact. Because the impact acceleration is transmitted to the head from the torso via the cervical column, the components of the human neck play a role in the mechanics of trauma.
Technical Paper

Biomechanics of Lumbar Motion-Segments in Dynamic Compression

2017-11-13
2017-22-0001
Recent epidemiology studies have reported increase in lumbar spine injuries in frontal crashes. Whole human body finite element models (FEHBM) are frequently used to delineate mechanisms of such injuries. However, the accuracy of these models in mimicking the response of human spine relies on the characterization data of the spine model. The current study set out to generate characterization data that can be input to FEHBM lumbar spine, to obtain biofidelic responses from the models. Twenty-five lumbar functional spinal units were tested under compressive loading. A hydraulic testing machine was used to load the superior ends of the specimens. A 75N load was placed on the superior PMMA to remove the laxity in the joint and mimic the physiological load. There were three loading sequences, namely, preconditioning, 0.5 m/s (non-injurious) and 1.0 m/s (failure). Forces and displacements were collected using six-axis load cell and VICON targets.
Technical Paper

Chestband Analysis of Human Tolerance to Side Impact

1997-11-12
973320
A series of 26 human cadaver tests with chestband instrumentation and accelerometers were completed to assess side impact injury tolerance. A Heidelberg-type sled test system was used with thorax, abdomen, and pelvic load plates. Tests were conducted at the Medical College of Wisconsin and through the Ohio State University College of Medicine at the NHTSA Vehicle Research and Test Center at two different velocities: 24 kph and 32 kph. Test conditions included rigid wall, padded wall, and pelvic offset. Accelerations were recorded at rib 4, rib 8, and T12. Up to three chestbands were placed on each surrogate. Chest deflections were derived by computing chest contours at every millisecond throughout the event. The derived chest deflection-time curves were differentiated to obtain velocity of chest compression. Injury criteria including ASA15N, TTI, normalized chest deflection, and VC were computed. Resulting injuries ranged from AIS = 0 to AIS = 5.
Technical Paper

Comparison of PMHS, WorldSID, and THOR-NT Responses in Simulated Far Side Impact

2007-10-29
2012-01-1537
Injury to the far side occupant has been demonstrated as a significant portion of the total trauma in side impacts. The objective of the study was to determine the response of PMHS in far side impact configurations, with and without generic countermeasures, and compare responses to the WorldSID and THOR dummies. A far side impact buck was designed for a sled test system that included a center console and three-point belt system. The buck allowed for additional options of generic countermeasures including shoulder or thorax plates or an inboard shoulder belt. The entire buck could be mounted on the sled in either a 90-degree (3-o'clock PDOF) or a 60-degree (2-o'clock PDOF) orientation. A total of 18 tests on six PMHS were done to characterize the far side impact environment at both low (11 km/h) and high (30 km/h) velocities. WorldSID and THOR-NT tests were completed in the same configurations to conduct matched-pair comparisons.
Technical Paper

Comparison of PMHS, WorldSID, and THOR-NT Responses in Simulated Far Side Impact

2007-10-29
2007-22-0014
Injury to the far side occupant has been demonstrated as a significant portion of the total trauma in side impacts. The objective of the study was to determine the response of PMHS in far side impact configurations, with and without generic countermeasures, and compare responses to the WorldSID and THOR dummies. A far side impact buck was designed for a sled test system that included a center console and three-point belt system. The buck allowed for additional options of generic countermeasures including shoulder or thorax plates or an inboard shoulder belt. The entire buck could be mounted on the sled in either a 90-degree (3-o'clock PDOF) or a 60-degree (2-o'clock PDOF) orientation. A total of 18 tests on six PMHS were done to characterize the far side impact environment at both low (11 km/h) and high (30 km/h) velocities. WorldSID and THOR-NT tests were completed in the same configurations to conduct matched-pair comparisons.
Technical Paper

Development of Side Impact Thoracic Injury Criteria and Their Application to the Modified ES-2 Dummy with Rib Extensions (ES-2re)

2003-10-27
2003-22-0010
Forty-two side impact cadaver sled tests were conducted at 24 and 32 km/h impact speeds into rigid and padded walls. The post-mortem human subjects were instrumented with accelerometers on the ribs and spine and chest bands around the thorax and abdomen to characterize their mechanical response during the impact. Load cells at the wall measured the impact force at the level of the thorax, abdomen, pelvis, and lower extremities. The resulting injuries were determined through detailed autopsy and radiography. Rib fractures with or without associated hemo/pneumo thorax or flail chest were the most common injury with severity ranging from AIS=0 to 5. Full and half thorax deflections were computed from the chest band data. The cadaver test data was analyzed using ANOVA and logistic regression. The age of the subject at the time of death had influence on injury outcome while gender and mass of the subject had little or no influence on injury outcome.
Technical Paper

Dynamic Axial Tolerance of the Human Foot-Ankle Complex

1996-11-01
962426
Axial loading of the calcaneus-talus-tibia complex is an important injury mechanism for moderate and severe vehicular foot-ankle trauma. To develop a more definitive and quantitative relationship between biomechanical parameters such as specimen age, axial force, and injury, dynamic axial impact tests to isolated lower legs were conducted at the Medical College of Wisconsin (MCW). Twenty-six intact adult lower legs excised from unembalmed human cadavers were tested under dynamic loading using a mini-sled pendulum device. The specimens were prepared, pretest radiographs were taken, and input impact and output forces together with the pathology were obtained using load cell data. Input impact forces always exceeded the forces recorded at the distal end of the preparation. The fracture forces ranged from 4.3 to 11.4 kN.
Technical Paper

Dynamic Responses of Intact Post Mortem Human Surrogates from Inferior-to-Superior Loading at the Pelvis

2014-11-10
2014-22-0005
During certain events such as underbody blasts due to improvised explosive devices, occupants in military vehicles are exposed to inferior-to-superior loading from the pelvis. Injuries to the pelvis-sacrum-lumbar spine complex have been reported from these events. The mechanism of load transmission and potential variables defining the migration of injuries between pelvis and or spinal structures are not defined. This study applied inferior-to-superior impacts to the tuberosities of the ischium of supine-positioned five post mortem human subjects (PMHS) using different acceleration profiles, defined using shape, magnitude and duration parameters. Seventeen tests were conducted. Overlay temporal plots were presented for normalized (impulse momentum approach) forces and accelerations of the sacrum and spine.
Technical Paper

Epidemiology and Injury Biomechanics of Motor Vehicle Related Trauma to the Human Spine

1989-10-01
892438
Engineering efforts directed at better occupant safety require a thorough understanding of available epidemiologic data. Epidemiologic studies using clinical as well as accident information facilitates the prioritization of biomechanics research so that controlled laboratory experimentation and/or analytical models can be advanced. This information has also value in dictating levels and types of injury that are critical to the development of anthropomorphic test devices used in crash environments. In this paper, motor vehicle accident related (excluding pedestrians, bicyclists, and motorcyclists) epidemiologic data were obtained from clinical and computerized accident (National Accident Sampling System-NASS) files. Clinical data were gathered from patients admitted to the Medical College of Wisconsin Affiliated Hospitals, and fatalities occurring in Milwaukee County, State of Wisconsin. NASS database with specific focus on spinal injuries of motor vehicle occupants was also used.
Technical Paper

Human Foot-Ankle Injuries and Associated Risk Curves from Under Body Blast Loading Conditions

2017-11-13
2017-22-0006
Under body blast (UBB) loading to military transport vehicles is known to cause foot-ankle fractures to occupants due to energy transfer from the vehicle floor to the feet of the soldier. The soldier posture, the proximity of the event with respect to the soldier, the personal protective equipment (PPE) and age/sex of the soldier are some variables that can influence injury severity and injury patterns. Recently conducted experiments to simulate the loading environment to the human foot/ankle in UBB events (~5ms rise time) with variables such as posture, age and PPE were used for the current study. The objective of this study was to determine statistically if these variables affected the primary injury predictors, and develop injury risk curves. Fifty below-knee post mortem human surrogate (PMHS) legs were used for statistical analysis. Injuries to specimens involved isolated and multiple fractures of varying severity.
Technical Paper

Improved thorax behavior of the EUROSID and effects on thorax injury assessment, on the basis of pendulum impacts

2001-06-04
2001-06-0141
In 1989, the EUROSID-1 was accepted in the European regulation ECE-R95. After a steady period of use, an upgraded version of this dummy: ES-2 is now considered as a step towards harmonization of side impact occupant regulations. The upgrades to the dummy include, amongst others, a modification of its torso back plate and a change in rib module guidance (piston-cylinder), especially to overcome anomalous rib deflection responses referred to as ""flat-top.'' Presented here are results of lateral and oblique pendulum tests, conducted on the EUROSID-1 and ES-2 to verify the modified torso back plate and to study the responses of three proposed rib module designs for ES-2. Particularly, rib deflections, rib VC responses, and thorax force-deflection responses are analyzed. The current study primarily addresses sensitivity of the ES-2 thorax to oblique loading.
Technical Paper

Injury Risk Curves for the Human Cervical Spine from Inferior-to-Superior Loading

2018-11-12
2018-22-0006
Cervical spine injuries can occur in military scenarios from events such as underbody blast events. Such scenarios impart inferior-to-superior loads to the spine. The objective of this study is to develop human injury risk curves (IRCs) under this loading mode using Post Mortem Human Surrogates (PMHS). Twenty-five PMHS head-neck complexes were obtained, screened for pre-existing trauma, bone densities were determined, pre-tests radiological images were taken, fixed in polymethylmethacrylate at the T2-T3 level, a load cell was attached to the distal end of the preparation, positioned end on custom vertical accelerator device based on the military-seating posture, donned with a combat helmet, and impacted at the base. Posttest images were obtained, and gross dissection was done to confirm injuries to all specimens. Axial and resultant forces at the cervico-thoracic joint was used to develop the IRCs using survival analysis.
Technical Paper

Instrumentation of Human Surrogates for Side Impact

1996-11-01
962412
The purpose of this study was to investigate the use of the chestband in side impact conditions by conducting validation experiments, and evaluating its feasibility by conducting a series of human cadaver tests under side impact crash scenarios. The chestband validation tests were conducted by wrapping the device around the thorax section of the Side Impact Dummy at its uppermost portion. The anthropomorphic test device was seated on a Teflon pad on a platform to accept impact from the side via a pendulum system. Tests were conducted at 4.5, 5.7, and 6.7 m/sec velocities using round and flat impactors. Retroreflective targets were placed at each strain gauge channel on the edge of the chestband. The test was documented using a high-speed digital video camera operating at 4500 frames/sec. Deformation contours and histories were obtained using the chestband electronic signals in combination with the RBAND-PC software.
X