Refine Your Search

Search Results

Viewing 1 to 16 of 16
Journal Article

A Mixed-Mode Fracture Criterion for AHSS Cracking Prediction at Large Strain

2011-04-12
2011-01-0007
Predicting AHSS cracking during crash events and forming processes is an enabling technology for AHSS application. Several fracture criteria including MatFEM and Modified Mohr-Coulomb Criterion were developed recently. However, none of them are designed to cover more fracture modes such as bending fracture and tearing fracture with initial damage. A mixed-mode fracture criterion (MMFC) is proposed and developed to capture multiple fracture modes including in-plane shearing fracture, cross-thickness shearing fracture with bending effect and tearing fracture with initial damage. The associated calibration procedure for this criterion is developed. The criterion is implemented in a commercial FEA code and several lab validations are conducted. The results show its promising potential to predict AHSS cracking at large strain conditions.
Technical Paper

A New Dual Phase Steel for Automotive Body Panels

2003-03-03
2003-01-0518
In an effort to optimize outer body panel steel utilization with respect to dent resistance performance and weight reduction, the automotive industry continues to investigate the application of higher strength steels. Most recently, dual phase steel has been recognized as a very promising material substrate for outer body panel application, due to its inherent formability and final part performance attributes. This paper presents a comprehensive study of Ispat Inland's new electrogalvanized dual phase “DI-FORM 500” product, which was specifically designed to meet automotive exposed quality standards. It reviews the mechanical properties, aging characteristics, formability, dent resistance, weldability and fatigue strength of this product, along with a representation of its application advantages to the automotive industry, in terms of part performance, weight savings and cost avoidance.
Technical Paper

A Novel Approach for Generating a Full-Range Tensile Stress-Strain Curve

2009-04-20
2009-01-0470
A new method has been developed to measure full stress-strain curves using Digital Image Correlation (DIC) for Advanced High Strength Steels (AHSS). With the post-necking strain measured by the built in-house DIC system during tensile tests, stress-strain data for AHSS beyond uniform elongation up to fracture can be determined. In this paper, the technique to generate full stress-strain curves by DIC is introduced. The measured stress-strain curves are compared with those obtained by extrapolation methods. The measured stress-strain data generated by the new method is validated by finite element analysis (FEA).
Journal Article

Advanced Material Characterizations and Constitutive Modeling for AHSS Springback Predictions

2010-04-12
2010-01-0980
Springback prediction is one of the roadblocks for using advanced high strength steel in the automotive industry. Accurate characterization and modeling of the mechanical behavior of AHSS is recognized as one of the critical factors for successful prediction of springback. Conventional tensile test based material characterization and constitutive modeling may lead to poor springback simulation accuracy. Aiming to accurately predict springback, a series of advanced material characterizations including bi-axial material testing, large-strain loading path reversal testing, unloading tests at large strain, stress-strain behavior beyond uniform elongation, were performed for selected AHSS and associated constitutive models were developed to incorporate these characterizations. Validations through lab samples and industrial parts show that the AHSS springback prediction accuracy is significantly improved with these improved material models.
Technical Paper

Application of Dual-Phase Steels for Automotive Closure Panels

2003-03-03
2003-01-0519
With interest in improving vehicle quality and customer satisfaction, Ford Motor Company initiated an effort aimed at improving dent resistance of closure panels. An investigation of various means of product improvement led to the recognition of dual phase steels, due to their inherent formability and strain hardening attributes, as the most appropriate steel panel for outer panel applications. Ispat Inland's new Electro-galvanized dual phase steel DI-FORM 500 (henceforth referred to by the generic designation, DP500), which meets 500 MPa minimum tensile strength, was specifically designed to meet automotive exposed quality standards. This paper compares the dent resistance performance of automotive door assemblies manufactured with both Bake Hardenable 210 (BH210) and DP500 door outer panels. Results indicate the achievement of significantly improved outer panel dent resistance through the use of the DP500 product.
Technical Paper

Characterization of Edge Fracture in Various Types of Advanced High Strength Steel

2011-04-12
2011-01-1058
In vehicle crash events there is the potential for fracture to occur at the processed edges of structural components. The ability to avoid these types of fractures is desired in order to minimize intrusion and optimize energy absorption. However, the prediction of edge cracking is complicated by the fact that conventional tensile testing can provide insufficient data in regards to the local fracture behavior of advanced high strength steels. Fracture prediction is also made difficult because there can be inadequate data on how the cutting processes used for hole piercing and blanking affect the edge condition. In order to address these challenges, research was undertaken to analyze edge fracture in simple test pieces configured with side notches and center holes. Test specimens were made from a number of advanced high strength steels including 590R (C-Mn), 780T (TRIP), 980Y (dual phase) and hot stamp 1500 (martensitic).
Technical Paper

Characterization of Press Formability of Advanced High Strength Steels Using Laboratory Tests

2004-03-08
2004-01-0506
To further the application of Advanced High Strength Steels (AHSS) in automotive body and structural parts, a good knowledge and experience base must be developed regarding the press formability of these materials. As a first step towards accomplishing this goal, the American Iron and Steel Institute, in collaboration with the United States Department of Energy, jointly funded under the Technology Roadmap Program, a study by Ispat Inland Research Laboratories to characterize the formability of AHSS using simulative laboratory tests. Splitting limits under different conditions and springback behavior of several grades of conventional high strength steels (HSS) such as bake-hardenable and HSLA steels, advanced high strength steels (AHSS) such as dual-phase and TRIP steels, and ultra-high strength steels (UHSS) such as recovery-annealed and tempered martensitic steels were characterized.
Journal Article

Comparison of Forming Limit Curves for Advanced High Strength Steels Using Different Techniques

2009-04-20
2009-01-1173
Forming Limit Curves (FLCs) have been used in press shops for decades during die development and more recently as failure criteria when used in conjunction with FEA for part feasibility analysis. Around the world there are different techniques used to determine the FLC. The differences between the techniques lie in tooling, specimen geometry and in the method used to determine the critical strains. A comprehensive study on FLCs of selected AHSS was carried out at ArcelorMittal Global R&D, where the different commonly used techniques and a new technique employing Digital Image Correlation (DIC) were employed to determine the FLCs. This paper presents results of these comparisons.
Technical Paper

Contact Pressure Distribution for Flow of Metal through Drawbeads

2006-04-03
2006-01-0787
To aid in understanding die wear when stamping AHSS, a study to characterize the contact pressure distribution in drawbeads during stamping had been undertaken. As direct measurement of contact pressure for a drawbead is not feasible during metal flow, a combination of experimental and Finite Element (FE) simulation techniques were used to determine the contact pressure distributions and the maximum contact pressure for a number of different conditions. Testing was conducted using the Drawbead Simulator (DBS) for two different bead configurations. The materials in this investigation were 0.7mm and 0.8mm EG BH210 and EG DP500. Static Implicit FE analyses were conducted with ABAQUS Standard using 2D plane strain continuum elements. A combined hardening model in conjunction with strain rate effects was used to describe material behavior as it flows through the drawbeads.
Journal Article

Experiences with Experimental Determination of the Yield Locus and its Evolution for Advanced High Strength Steels

2010-04-12
2010-01-0976
Accurate description of the plastic yield locus is important for accurate prediction of sheet metal formability and springback using FEM. This paper presents experimental results obtained for the initial plastic yield locus and its evolution for some selected Advanced High Strength Steels (AHSS). A review of available experimental methods was conducted to select appropriate techniques for testing. For loading in tension-shear, the Arcan test was selected, however because of lack of uniformity of the stress distribution, the test was not included in the final series of tests. Shear testing, uniaxial tensile testing, plane strain testing and stacked compression testing were used to determine the yield locus. From the test results and analysis for the selected AHSS, it seems that the onset of initial yielding and its isotropic evolution to 4% plastic strain is best described by the von Mises yield function.
Technical Paper

Material and Design Factors Influencing the Quasi-Static Dent Resistance of Steel Body Panels

1999-03-01
1999-01-0025
The quasi-static denting behavior of sheet steels has been analyzed in a systematic FEA study, which considers material properties, panel radius, sheet thickness, panel length and boundary conditions. Results from a full factorial experimental matrix have been analyzed statistically to identify those variables and variable interactions that influence dent performance. The primary factors which control dent performance are material properties, panel radius and sheet thickness, while panel length and boundary conditions are not significant. Based on the results of this study, two commonly used dent criteria (loading energy and visible dent load) are analyzed, and previously reported opposite effects of radius of curvature on dent performance are clarified.
Journal Article

Measurement of Fracture Strains for Advanced High Strength Steels (AHSS) Using Digital Image Correlation

2009-04-20
2009-01-1174
Predicting fracture behavior of Advanced High Strength Steels (AHSS) on both manufacturing and crash simulations is becoming more and more important with the wide use of AHSS in automotive industry. The accurate measurement of fracture strains is a critical input for predicting failure in FEA simulations. It is well known that fracture is a highly localized behavior and fracture strain is gauge or size dependent. In this paper, a full field measurement technique, Digital Image Correlation (DIC), is employed to measure gauge-dependent fracture strains for several Advanced High Strength Steels (AHSS) under tensile test conditions and Limit Dome Height (LDH) tests. Applications of the fracture strains for FEA simulation are discussed.
Technical Paper

Performance Evaluation of GMAW Welds for Four Advanced High Strength Steels

2005-04-11
2005-01-0904
This paper investigates the characteristics of GMAW of various sheet steels grades ranging from HSLA, dual phase, to martensitic. From the arc welding point of view, the dual phase and martensitic steels behave similarly to conventional high strength steels. Regarding the properties of GMAW joints, the static and dynamic mechanical testing were conducted and compared along with the weld metal microhardness and microstructure. Results show that while the strength of the sheet steel weld, in general increases with the base material strength, Joint Efficiency, defined as the ratio of the strength of joint to the strength of the base metal, decreases with the increase of martensite fraction in the sheet steel. Martensitic steels, especially, exhibits reduced weld strength due to softening of the HAZ. However, fatigue strength of these steels is not adversely affected by the softened HAZ, and is insensitive to the strength of the steel.
Technical Paper

Sheared Edge Characterization of Steel Products used for Closure Panel Applications

2006-04-03
2006-01-1589
Application of Advanced High Strength Steels (AHSS) to closure and structural parts in the automotive industry is increasing in future models. In addition to weight reduction, the other primary motivation to consider these products is the improvement of structural performance that is needed to meet future stringent safety standards. AHSS products have a combination of unique microstructures and mechanical behavior. It is important to develop basic knowledge and understanding of all the manufacturing aspects of forming these products, so that robust forming processes can be engineered to successfully form parts in a production environment. The edge condition obtained after post-draw operations such as trimming has a significant influence on processes such as stretch flanging. A study to investigate the influence of punching clearance on the edge characteristics of various AHSS products has been initiated at Mittal Steel R&D.
Technical Paper

Stretch Bendability of Advanced High Strength Steels

2003-03-03
2003-01-1151
Bending under tension is an important deformation mode during stamping and has been observed to limit achievable ductility for high strength steels. This paper presents experimental results from Angular Stretch Bend (ASB) testing, which has been used to characterize bending under tension behavior for several conventional, advanced high strength steels and ultra-high strength steels. Steels that were studied include Bake Hardenable steels, High Strength Low Alloy (HSLA) steels, Dual Phase (DP) steels, Transformation Induced Plasticity (TRIP) steels, and tempered martensitic steels. Failure heights were determined under sample lockout conditions for different punch radii. By comparing absolute formability measured by the failure height, the results can be used to provide material formability ranking for different R/t ratios. In addition, strain distributions were analyzed to provide bending under tension forming limits for the different steel grades.
Technical Paper

Unloading Modulus on Springback in Steels

2004-03-08
2004-01-1050
Springback is one of the major concerns as more advanced high strength steels are used in the automotive industry. Unlike FEA forming simulation, FEA springback simulation is not widely used in the production due to its poor accuracy. One of the reasons for this is that some complex material behaviors are not fully considered in the FEA simulations. In this study, a number of experiments were conducted to study the unloading behavior of steels with different pre-strain levels. Unloading modulus and related damage parameters at 1%, 2% and 5% pre-strain are calculated for 14 different steel grades from the experimental data to consider the inelastic effects during unloading. The unloading modulus was found to be 10% to 20% lower than the Young's modulus. FEA springback simulations were conducted for a benchmark test with two steel grades. Simulated springback results are compared with the experimental data.
X