Refine Your Search

Topic

Search Results

Journal Article

48V Exhaust Gas Recirculation Pump: Reducing Carbon Dioxide with High-Efficiency Turbochargers without Increasing Engine-Out NOx

2021-08-23
Abstract Regulations limiting GreenHouse Gases (GHG) from Heavy-Duty (HD) commercial vehicles in the United States (US) and European Union will phase in between the 2024 and 2030 model years. These mandates require efficiency improvements at both the engine and vehicle levels, with the most stringent reductions required in the heaviest vehicles used for long-haul applications. At the same time, a 90% reduction in oxides of nitrogen (NOx) will be required as part of new regulations from the California Air Resources Board. Any technologies applied to improve engine efficiency must therefore not come at the expense of increased NOx emissions. Research into advanced engine architectures and components has identified improved turbomachine efficiency as one of the largest potential contributors to engine efficiency improvement. However this comes at the cost of a reduced capability to drive high-pressure Exhaust Gas Recirculation (EGR).
Journal Article

A Brief Introduction to a Novel High-Efficiency Hybrid Power System for Hybrid Electric Urban Light Commercial Vehicles

2021-03-03
Abstract The linear engine as compared with the traditional internal combustion engine has high efficiency and low emissions, so as a new type of hybrid power unit, it is very suitable for a hybrid electric vehicle to improve energy efficiency and environmental protection performances. In this article, a novel linear engine-based hybrid power system that is primarily selected for hybrid electric urban light commercial vehicles is introduced. Furthermore, the working efficiency of the proposed hybrid power system is briefly analyzed through a validation study example, and various inherent factors affecting the working efficiency of the hybrid power system are analyzed and discussed in detail. This work can provide a reference implementation for the research on the power unit for the hybrid electric urban light commercial vehicles.
Journal Article

A Calculation Methodology for Predicting Exhaust Mass Flows and Exhaust Temperature Profiles for Heavy-Duty Vehicles

2020-07-20
Abstract The predictive control of commercial vehicle energy management systems, such as vehicle thermal management or waste heat recovery (WHR) systems, are discussed on the basis of information sources from the field of environment recognition and in combination with the determination of the vehicle system condition. In this article, a mathematical method for predicting the exhaust gas mass flow and the exhaust gas temperature is presented based on driving data of a heavy-duty vehicle. The prediction refers to the conditions of the exhaust gas at the inlet of the exhaust gas recirculation (EGR) cooler and at the outlet of the exhaust gas aftertreatment system (EAT). The heavy-duty vehicle was operated on the motorway to investigate the characteristic operational profile.
Journal Article

A Comparative Study of Directly Injected, Spark Ignition Engine Combustion and Energy Transfer with Natural Gas, Gasoline, and Charge Dilution

2022-01-13
Abstract This article presents an investigation of energy transfer, flame propagation, and emissions formation mechanisms in a four-cylinder, downsized and boosted, spark ignition engine fuelled by either directly injected compressed natural gas (DI CNG) or gasoline (GDI). Three different charge preparation strategies are examined for both fuels: stoichiometric engine operation without external dilution, stoichiometric operation with external exhaust gas recirculation (EGR), and lean burn. In this work, experiments and engine modelling are first used to analyze the energy transfer throughout the engine system. This analysis shows that an early start of fuel injection (SOI) improves fuel efficiency through lower unburned fuel energy at low loads with stoichiometric DI CNG operation.
Journal Article

A Comparison of EGR Correction Factor Models Based on SI Engine Data

2019-03-27
Abstract The article compares the accuracy of different exhaust gas recirculation (EGR) correction factor models under engine conditions. The effect of EGR on the laminar burning velocity of a EURO VI E10 specification gasoline (10% Ethanol content by volume) has been back calculated from engine pressure trace data, using the Leeds University Spark Ignition Engine Data Analysis (LUSIEDA) reverse thermodynamic code. The engine pressure data ranges from 5% to 25% EGR (by mass) with the running conditions, such as spark advance and pressure at intake valve closure, changed to maintain a constant engine load of 0.79 MPa gross mean effective pressure (GMEP). Based on the experimental data, a correlation is suggested on how the laminar burning velocity reduces with increasing EGR mass fraction.
Journal Article

A Decentralized Multi-agent Energy Management Strategy Based on a Look-Ahead Reinforcement Learning Approach

2021-11-05
Abstract An energy management strategy (EMS) has an essential role in ameliorating the efficiency and lifetime of the powertrain components in a hybrid fuel cell vehicle (HFCV). The EMS of intelligent HFCVs is equipped with advanced data-driven techniques to efficiently distribute the power flow among the power sources, which have heterogeneous energetic characteristics. Decentralized EMSs provide higher modularity (plug and play) and reliability compared to the centralized data-driven strategies. Modularity is the specification that promotes the discovery of new components in a powertrain system without the need for reconfiguration. Hence, this article puts forward a decentralized reinforcement learning (Dec-RL) framework for designing an EMS in a heavy-duty HFCV. The studied powertrain is composed of two parallel fuel cell systems (FCSs) and a battery pack.
Journal Article

A Heavy Tractor Semi-Trailer Stability Control Strategy Based on Electronic Pneumatic Braking System HIL Test

2019-10-15
Abstract Aiming to improve the handling performance of heavy tractor semi-trailer during turning or changing lanes at high speed, a hierarchical structure controller is proposed and a hardware-in-the-loop (HIL) test bench of the electronic pneumatic braking system is developed to validate the proposed controller. In the upper controller, a Kalman filter observer based on the heavy tractor semi-trailer dynamic model is used to estimate the yaw rates and sideslip angles of the tractor and trailer. Simultaneously, a sliding mode direct yaw moment controller is developed, which takes the estimated yaw rates and sideslip angles and the reference values calculated by the three-degrees-of-freedom dynamic model of the heavy tractor semi-trailer as the control inputs. In the lower controller, the additional yaw moments of tractor and trailer are transformed into corresponding wheel braking forces according to the current steering characteristics.
Journal Article

A Novel Approach for the Frequency Shift of a Single Component Eigenmode through Mass Addition in the Context of Brake Squeal Reduction

2022-09-23
Abstract Brake squeal reduces comfort for the vehicle occupants, damages the reputation of the respective manufacturer, and can lead to financial losses due to cost-intensive repair measures. Mode coupling is mainly held responsible for brake squeal today. Two adjacent eigenfrequencies converge and coalesce due to a changing bifurcation parameter. Several approaches have been developed to suppress brake squeal through structural changes. The main objective is to increase the distance of coupling eigenfrequencies. This work proposes a novel approach to structural modifications and sizing optimization aiming for a start at shifting a single component eigenfrequency. Locations suitable for structural changes are derived such that surrounding modes do not significantly change under the modifications. The positions of modifications are determined through a novel sensitivity calculation of the eigenmode to be shifted in frequency.
Journal Article

A Novel Approach towards Stable and Low Emission Stratified Lean Combustion Employing Two Solenoid Multi-Hole Direct Injectors

2018-04-18
Abstract Stratified lean combustion has proven to be a promising approach for further increasing the thermal efficiency of gasoline direct injection engines in low load conditions. In this work, a new injection strategy for stratified operation mode is introduced. A side and a central-mounted solenoid multi-hole injector are simultaneously operated in a single-cylinder engine. Thermodynamic investigations show that this concept leads to improved stability, faster combustion, reduced particle number emissions, and lower fuel consumption levels compared to using only one injector. Experiments at an optical engine and three-dimensional computational fluid dynamics (CFD) simulations explain the improvements by a more compact mixture and reduced piston wetting with two injectors. Finally, the application of external EGR in combination with the above concept allows NOx emissions to be effectively kept at a low level while maintaining a stable operation.
Journal Article

A Novel Combustion Chamber to Physically Stratify the Charge in a Gasoline Direct Injection Engine

2022-05-17
Abstract Realizing the potential of the gasoline direct injection (GDI) concept lies in effectively stratifying the charge at different engine operating conditions. This is generally obtained by properly directing the air and fuel through carefully oriented intake port(s) and fuel spray and appropriately changing injection parameters. However, robust methods of charge stratification are essential to extend the lean operating range, particularly in small GDI engines. In this work, a novel piston shape was developed for a 200 cm3, single-cylinder, four-stroke gasoline engine to attain charge stratification. Stratification of charge is achieved even when the fuel was injected early in the intake stroke by a specially shaped wedge on the piston crown that produced twin vortices during compression and physically separated the charge into two sides in the combustion chamber.
Journal Article

A Novel Idea for Replacement of Traditional Catalytic Converter with Multi-tubular Solid Oxide Fuel Cell

2021-12-23
Abstract Emission Control has always been a major concern in each and every field. An increase in emissions leads to climate change, global warming, and even various diseases. The transportation system is responsible for around 30% of emission production, of which 70% of the total atmospheric burden comes from automobiles. Recently developed emission-free electric vehicles have positively affected the levels of impurity in the environment, yet the remaining Internal Combustion Engine (ICE) vehicles on the road have been left with unchecked emissions. Traditional Catalytic Converters are widely used to reduce the emissions of vehicles. It works on the principle of converting hazardous gases emitted from the engine to less harmful carbon dioxide (CO2), nitrogen (N2), and water (H2O). It is integrated with the exhaust of the engine. High efficiency and better emission control catalytic converters are still major milestones to achieve for automotive industries.
Journal Article

A Pedal Map Setting Method for Considering the Controllability of Vehicle Speed

2021-02-26
Abstract To solve the problem that it is difficult for drivers to control the vehicle at low speed, a new setting scheme of pedal map is proposed to ensure that the vehicle has the speed controllability in the full speed range. In this scheme, based on obtaining the maximum and minimum driving characteristics of the vehicle and the driving resistance characteristics of the vehicle, the pedal map is divided into a sensitive area and insensitive area. In the insensitive area, acceleration hysteresis is formed, which ensures that the throttle is slightly fluctuated and has good speed stability. At the same time, the sensitive area of the accelerator pedal is formed far away from the driving resistance curve to ensure that the vehicle has a great acceleration ability. To verify the effectiveness of the proposed scheme, the data of a commercial vehicle is selected for the design of the pedal map, and the driver-vehicle closed-loop test based on the driving simulator is conducted.
Journal Article

A Practical Fail-Operational Steering Concept

2020-10-02
Abstract Automated vehicles require some level of subsystem redundancy, whether to allow a transition time for driver re-engagement (L3) or continued operation in a faulted state (L4+). Highly automated vehicle developers need to have safe miles accumulated by vehicles to assess system maturity and experience new environments. This article presents a conceptual framework suggesting that hardware newly available to commercial vehicle application can be used to form a steering system that will remain operational upon a failure. The key points of a provisional safety case are presented, giving hope that a complete safety case is possible. This article will provide autonomous vehicle developers a view of a near term possibility for a highly automated commercial vehicle steering solution.
Journal Article

A Real-Time-Capable Simulation Model for Off-Highway Applications Considering Soft Soil

2021-09-02
Abstract This article describes the real-time simulation of a tire model for the off-highway sector. The off-highway area is characterized by soft surfaces. The additional deformation of the ground can result in more complex interactions between the tires and ground than in the on-highway area. The basics for these relationships are explained using normal and shear stress models. Aspects such as elastic tires, sinking due to slip, and multipass are also described. It is explained how soft soil modeling is used by a height field model to calculate the deformations of the soil and the resulting tire forces. Particular emphasis is placed on the calculation time and the numerical stability. The implementation in an existing real-time-capable vehicle model is described, which is important to provide a comprehensive simulation solution. During the validation it could be shown that the implemented height field can correctly map the soft soil properties.
Journal Article

A Review Paper on Recent Research of Noise and Vibration in Electric Vehicle Powertrain Mounting System

2021-10-01
Abstract The Noise, Vibration, and Harshness (NVH) performance of automotive powertrain (PT) mounts involves the PT source vibration, PT mount stiffness, road input, and overall transfer path design. Like safety, performance, and durability driving dynamics, vehicle-level NVH also plays a major contributing factor for electric vehicle (EV) refinement. This article highlights the recent research on PT mounting-related NVH controls on electric cars. This work’s main contribution lies in the comparative study of the internal combustion engine (ICE)-based PT mounting and EV-based PT mounting system (PMS) with specific EV challenges. Various literature on PT mounts from the passive, semi-active, and active mounting systems are studied. The parameter optimization technique for mount stiffness and location by various research papers is summarized to understand the existing methodologies and research gap in EV application.
Journal Article

A Review on Physical Mechanisms of Tire-Pavement Interaction Noise

2019-05-16
Abstract Tire-pavement interaction noise (TPIN) dominates for passenger cars above 40 km/h and trucks above 70 km/h. Numerous studies have attempted to uncover and distinguish the basic mechanisms of TPIN. However, intense debate is still ongoing about the validity of these mechanisms. In this work, the physical mechanisms proposed in the literature were reviewed and divided into three categories: generation mechanisms, amplification mechanisms, and attenuation mechanisms. The purpose of this article is to gather the published general opinions for further open discussions.
Journal Article

A Unique Application of Gasoline Particulate Filter Pressure Sensing Diagnostics

2021-08-06
Abstract Gasoline particulate filters (GPFs) are important aftertreatment components that enable gasoline direct injection (GDI) engines to meet European Union (EU) 6 and China 6 particulate number emissions regulations for nonvolatile particles greater than 23 nm in diameter. GPFs are rapidly becoming an integral part of the modern GDI aftertreatment system. The Active Exhaust Tuning (EXTUN) Valve is a butterfly valve placed in the tailpipe of an exhaust system that can be electronically positioned to control exhaust noise levels (decibels) under various vehicle operating conditions. This device is positioned downstream of the GPF, and variations in the tuning valve position can impact exhaust backpressures, making it difficult to monitor soot/ash accumulation or detect damage/removal of the GPF substrate. The purpose of this work is to present a unique example of subsystem control and diagnostic architecture for an exhaust system combining GPF and EXTUN.
Journal Article

A Wind-Tunnel Investigation of the Influence of Separation Distance, Lateral Stagger, and Trailer Configuration on the Drag-Reduction Potential of a Two-Truck Platoon

2018-06-13
Abstract A wind-tunnel study was undertaken to investigate the drag reduction potential of two-truck platooning, in the context of understanding some of the factors that may influence the potential fuel savings and greenhouse-gas reductions. Testing was undertaken in the National Research Council Canada 2 m × 3 m Wind Tunnel with two 1/15-scale models of modern aerodynamic tractors paired with dry-van trailers configured with and without combinations of side-skirts and boat-tails. Separation distances of 0.14, 0.28, 0.49, 0.70 and 1.04 vehicle lengths were tested (3 m, 6 m, 10.5 m, 15 m, and 22.5 m full scale). Additionally, within-lane lateral offsets up to 0.31 vehicle widths (0.8 m full scale) were evaluated, along with a full-lane offset of 1.42 vehicle widths (3.7 m full scale). This study has made use of a wind-averaged-drag coefficient as the primary metric for evaluating the effect of vehicle platooning.
Journal Article

Adaptive Transmission Shift Strategy Based on Online Characterization of Driver Aggressiveness

2018-06-04
Abstract Commercial vehicles contribute to the majority of freight transportation in the United States. They are also significant fuel consumers, with over 23% of fuel used in transportation in the United States. The gas price volatility and increasingly stringent regulation on greenhouse-gas emissions have driven manufacturers to adopt new fuel-efficient technologies. Among others, an advanced transmission control strategy, which can provide tangible improvement with low incremental cost. In the commercial sector, individual drivers have little or no interest in vehicle fuel economy, contrary to fleet owners. Aggressive driving behavior can greatly increase the real-world vehicle fuel consumption. However, the effectiveness of transmission calibration to match the shift strategy to the driving characteristics is still a challenge.
Journal Article

Advances in Emission Regulations and Emission Control Technologies for Internal Combustion Engines

2021-09-13
Abstract While the hot debate keeps going about whether the internal combustion engine (ICE) will die or not, the ICE community never stopped improving the technologies that improve the fuel economy and reduce harmful emissions. Focusing on the emissions and the control system, this article reviewed the latest improvement and advances of related technologies. By firstly introducing the noteworthy emissions from ICE, this work then summarized the evolution of the related emission regulations on both light-duty and high-duty vehicles in a few major market regions. The key technologies that applied or are still under development for both carbon dioxide (CO2), nitrogen oxides (NOx), and particulate matter (PM)/particle number (PN) emissions control were reviewed in detail. Lastly, the foreseeable regulations limits and the potential challenges were discussed briefly.
X