Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Computational Investigation of the Effects of Swirl Ratio and Injection Pressure on Mixture Preparation and Wall Heat Transfer in a Light-Duty Diesel Engine

2013-04-08
2013-01-1105
In a recent study, quantitative measurements were presented of in-cylinder spatial distributions of mixture equivalence ratio in a single-cylinder light-duty optical diesel engine, operated with a non-reactive mixture at conditions similar to an early injection low-temperature combustion mode. In the experiments a planar laser-induced fluorescence (PLIF) methodology was used to obtain local mixture equivalence ratio values based on a diesel fuel surrogate (75% n-heptane, 25% iso-octane), with a small fraction of toluene as fluorescing tracer (0.5% by mass). Significant changes in the mixture's structure and composition at the walls were observed due to increased charge motion at high swirl and injection pressure levels. This suggested a non-negligible impact on wall heat transfer and, ultimately, on efficiency and engine-out emissions.
Journal Article

A Detailed Comparison of Emissions and Combustion Performance Between Optical and Metal Single-Cylinder Diesel Engines at Low Temperature Combustion Conditions

2008-04-14
2008-01-1066
A detailed comparison of cylinder pressure derived combustion performance and engine-out emissions is made between an all-metal single-cylinder light-duty diesel engine and a geometrically equivalent engine designed for optical accessibility. The metal and optically accessible single-cylinder engines have the same nominal geometry, including cylinder head, piston bowl shape and valve cutouts, bore, stroke, valve lift profiles, and fuel injection system. The bulk gas thermodynamic state near TDC and load of the two engines are closely matched by adjusting the optical engine intake mass flow and composition, intake temperature, and fueling rate for a highly dilute, low temperature combustion (LTC) operating condition with an intake O2 concentration of 9%. Subsequent start of injection (SOI) sweeps compare the emissions trends of UHC, CO, NOx, and soot, as well as ignition delay and fuel consumption.
Technical Paper

An Experimental Assessment of Turbulence Production, Reynolds Stress and Length Scale (Dissipation) Modeling in a Swirl-Supported DI Diesel Engine

2003-03-03
2003-01-1072
Simultaneous measurements of the radial and the tangential components of velocity are obtained in a high-speed, direct-injection diesel engine typical of automotive applications. Results are presented for engine operation with fuel injection, but without combustion, for three different swirl ratios and four injection pressures. With the mean and fluctuating velocities, the r-θ plane shear stress and the mean flow gradients are obtained. Longitudinal and transverse length scales are also estimated via Taylor's hypothesis. The flow is shown to be sufficiently homogeneous and stationary to obtain meaningful length scale estimates. Concurrently, the flow and injection processes are simulated with KIVA-3V employing a RNG k-ε turbulence model. The measured turbulent kinetic energy k, r-θ plane mean strain rates ( 〈Srθ〉, 〈Srr〉, and 〈Sθθ〉 ), deviatoric turbulent stresses , and the r-θ plane turbulence production terms are compared directly to the simulated results.
Technical Paper

An Experimental Investigation on Spray Characteristics of Waste Cooking Oil, Jatropha, and Karanja Biodiesels in a Constant Volume Combustion Chamber

2016-10-17
2016-01-2263
In this study, macroscopic spray characteristics of Waste cooking oil (WCO), Jatropha oil, Karanja oil based biodiesels and baseline diesel were compared under simulated engine operating condition in a constant volume spray chamber (CVSC). The high pressure and high temperature ambient conditions of a typical diesel engine were simulated in the CVSC by performing pre-ignition before the fuel injection. The spray imaging was conducted under absence of oxygen in order to prevent the fuels from igniting. The ambient pressure and temperature for non-evaporating condition were 3 MPa and 300 K. Meanwhile, the spray tests were performed under the ambient pressure and temperature of 4.17 MPa and 804 K under evaporating condition. The fuels were injected by a common-rail injection system with injection pressure of 80 MPa. High speed Mie-scattering technique was employed to visualize the evaporating sprays.
Journal Article

An Investigation into the Effects of Fuel Properties and Engine Load on UHC and CO Emissions from a Light-Duty Optical Diesel Engine Operating in a Partially Premixed Combustion Regime

2010-05-05
2010-01-1470
The behavior of the engine-out UHC and CO emissions from a light-duty diesel optical engine operating at two PPCI conditions was investigated for fifteen different fuels, including diesel fuels, biofuel blends, n-heptane-iso-octane mixtures, and n-cetane-HMN mixtures. The two highly dilute (9-10% O₂) early direct injection PPCI conditions included a low speed (1500 RPM) and load (3.0 bar IMEP) case~where the UHC and CO have been found to stem from overly-lean fuel-air mixtures~and a condition with a relatively higher speed (2000 RPM) and load (6.0 bar IMEP)~where globally richer mixtures may lead to different sources of UHC and CO. The main objectives of this work were to explore the general behavior of the UHC and CO emissions from early-injection PPCI combustion and to gain an understanding of how fuel properties and engine load affect the engine-out emissions.
Journal Article

Analysis of EGR Effects on the Soot Distribution in a Heavy Duty Diesel Engine using Time-Resolved Laser Induced Incandescence

2010-10-25
2010-01-2104
The soot distribution as function of ambient O₂ mole fraction in a heavy-duty diesel engine was investigated at low load (6 bar IMEP) with laser-induced incandescence (LII) and natural luminosity. A Multi-YAG laser system was utilized to create time-resolved LII using 8 laser pulses with a spacing of one CAD with detection on an 8-chip framing camera. It is well known that the engine-out smoke level increases with decreasing oxygen fraction up to a certain level where it starts to decrease again. For the studied case the peak occurred at an O₂ fraction of 11.4%. When the oxygen fraction was decreased successively from 21% to 9%, the initial soot formation moved downstream in the jet. At the lower oxygen fractions, below 12%, no soot was formed until after the wall interaction. At oxygen fractions below 11% the first evidence of soot is in the recirculation zone between two adjacent jets.
Technical Paper

Application of a Wide Range Oxygen Sensor for the Misfire Detection

1999-05-03
1999-01-1485
A new concept of misfire detection in spark ignition engines using a wide-range oxygen sensor is introduced. A wide-range oxygen sensor, installed at the confluence point of the exhaust manifold, was adopted to measure the variation in oxygen concentration in case of a misfire. The signals of the wide-range oxygen sensor were characterized over the various engine-operating conditions in order to decide the monitoring parameters for the detection of the misfire and the corresponding faulty cylinder. The effect of the sensor position, the transient response characteristics of the sensor and the cyclic variation in the signal fluctuation were also investigated. Limited response time of a commercially available sensor barely allowed to observe misfire. It was found that a misfiring could be distinguished more clearly from normal combustion through the differentiation of the sensor response signal. The differentiated signal has twin peaks for a single misfiring in a cylinder.
Technical Paper

Assessment of RNG Turbulence Modeling and the Development of a Generalized RNG Closure Model

2011-04-12
2011-01-0829
RNG k-ε closure turbulence dissipation equations are evaluated employing the CFD code KIVA-3V Release 2. The numerical evaluations start by considering simple jet flows, including incompressible air jets and compressible helium jets. The results show that the RNG closure turbulence model predicts lower jet tip penetration than the "standard" k-ε model, as well as being lower than experimental data. The reason is found to be that the turbulence kinetic energy is dissipated too slowly in the downstream region near the jet nozzle exit. In this case, the over-predicted R term in RNG model becomes a sink of dissipation in the ε-equation. As a second step, the RNG turbulence closure dissipation models are further tested in complex engine flows to compare against the measured evolution of turbulence kinetic energy, and an estimate of its dissipation rate, during both the compression and expansion processes.
Technical Paper

Assessment of Soot Particles in an Exhaust Gas for Low Temperature Diesel Combustion with High EGR in a Heavy Duty Compression Ignition Engine

2013-10-14
2013-01-2572
The characteristics of soot particles in an exhaust gas for low temperature diesel combustion (LTC) compared with conventional combustion in a compression ignition engine were experimentally investigated by the elemental and thermogravimetric analysis (TGA). Morphology of soot particles was also studied by the transmission electron microscopy (TEM). From the result of the TGA, the water can be evaporated until about 150°C for both combustion regimes. The soot particles for LTC contained more volatile hydrocarbons, which can be easily evaporated from 200°C to 420°C compared with conventional diesel combustion. The soot oxidation for conventional combustion occurs up to 600°C, on the other hand the particles for LTC is oxidized below 520°C. Elemental analysis showed higher oxygen weight fraction resulted from the oxygenated hydrocarbon for the soot particles in LTC. TEM has shown primary particles to be in a diameter range of 20 to 50 nm for conventional diesel combustion.
Journal Article

Characteristics of Turbocharger with TiAl Turbine Wheel in a Downsizing GDI Engine

2013-10-14
2013-01-2499
Steady and transient tests in a downsizing Gasoline Direct Injection (GDI) in-line 4 cylinders 2.0 liter engine were carried out to investigate characteristics of turbocharger with Titanium aluminide (TiAl) turbine wheel. The density of TiAl material is lower than Inconel 718 (Inconel) which is raw material for conventional turbine wheel. The objective of this study was to investigate the effect of light rotational inertia of turbine wheel on engine performance. Performance of TiAl turbine wheel turbocharger itself was also compared to that of Inconel turbine wheel turbocharger. Except for the turbine wheels, all experimental conditions were matched to be the same load and engine speed conditions. The compressor total-to-total pressure ratio of TiAl turbocharger was higher under part load condition due to higher turbocharger speed of TiAl turbocharger, which was led by lower rotational inertia of TiAl turbine wheel, while the engine performance was not much improved.
Journal Article

Characterization of Flow Asymmetry During the Compression Stroke Using Swirl-Plane PIV in a Light-Duty Optical Diesel Engine with the Re-entrant Piston Bowl Geometry

2015-04-14
2015-01-1699
Flow field asymmetry can lead to an asymmetric mixture preparation in Diesel engines. To understand the evolution of this asymmetry, it is necessary to characterize the in-cylinder flow over the full compression stroke. Moreover, since bowl-in-piston cylinder geometries can substantially impact the in-cylinder flow, characterization of these flows requires the use of geometrically correct pistons. In this work, the flow has been visualized via a transparent piston top with a realistic bowl geometry, which causes severe experimental difficulties due to the spatial and temporal variation of the optical distortion. An advanced optical distortion correction method is described to allow reliable particle image velocimetry (PIV) measurements through the full compression stroke. Based on the ensemble-averaged velocity results, flow asymmetry characterized by the swirl center offset and the associated tilting of the vortex axis is quantified.
Technical Paper

Characterization of the Mixing of Fresh Charge with Combustion Residuals Using Laser Raman Scattering with Broadband Detection

1998-05-04
981428
Spontaneous Raman scattering with broadband signal collection is used to simultaneously measure the mole fractions of CO2, H2O, N2, O2, and fuel (C3H8) in a spark-ignition engine operating at low load. Both cycle-averaged and single-shot, cycle-resolved measurements of the mixing between residual and fresh charge are made from the beginning of the intake stroke to TDC compression. The measurements are made at twelve locations simultaneously with sub-millimeter spatial precision, which is sufficient to resolve the characteristic scales of inhomogeneity in most cases. Analysis of the spatial covariance functions provides a measure of the noise contribution to the measured mole fractions and, in certain instances, allows the determination of whether the measured composition fluctuations are associated with spatial inhomogeneities or with cyclic variations in overall charge composition.
Technical Paper

Combustion Control Using Two-Stage Diesel Fuel Injection in a Single-Cylinder PCCI Engine

2004-03-08
2004-01-0938
A diesel-fueled premixed charged compression ignition (PCCI) combustion technique using a two-stage injection strategy has been investigated in a single cylinder optical engine equipped with a common-rail fuel system. Although PCCI combustion has the advantages of reducing NOx and PM emissions, difficulties in vaporization of a diesel fuel and control of the combustion phase hinder the development of the PCCI engine. A two-stage injection strategy was applied to relieve these problems. The first injection, named as main injection, was an early direct injection of diesel fuel into the cylinder to achieve premixing with air. The second injection was a diesel injection of a small quantity (1.5 mm3) as an ignition promoter and combustion phase controller near TDC. Effects of injection pressure, injected fuel quantity and compression ratio were studied with variation of an intake air temperature.
Journal Article

Combustion Phenomena and Emissions in a Dual-Fuel Optical Engine Fueled with Diesel and Natural Gas

2021-09-21
2021-01-1175
The application of dual-fuel combustion in the freight transportation sectors has received considerable attention due to the capability of achieving higher fuel efficiency and less pollutant emissions than the conventional diesel engines. In this study, high-speed flame visualization was used to investigate the phenomena of natural gas/diesel dual-fuel combustion in a single-cylinder heavy-duty engine with optical access. To implement diverse fuel blending conditions, diesel injection timing and natural gas substitution ratio were varied under constant fuel energy input. A novel flame regime separation method was implemented based on color segmentation in HSV color space to characterize the spatial distributions of premixed and non-premixed flame regimes. Flame images for larger natural gas substitution showed a significant reduction in the non-premixed flame regime accompanied by flame propagation along the vaporized diesel sprays.
Journal Article

Comparison of Quantitative In-Cylinder Equivalence Ratio Measurements with CFD Predictions for a Light Duty Low Temperature Combustion Diesel Engine

2012-04-16
2012-01-0143
In a recent experimental study the in-cylinder spatial distribution of mixture equivalence ratio was quantified under non-combusting conditions by planar laser-induced fluorescence (PLIF) of a fuel tracer (toluene). The measurements were made in a single-cylinder, direct-injection, light-duty diesel engine at conditions matched to an early-injection low-temperature combustion mode. A fuel amount corresponding to a low load (3.0 bar indicated mean effective pressure) operating condition was introduced with a single injection at -23.6° ATDC. The data were acquired during the mixture preparation period from near the start of injection (-22.5° ATDC) until the crank angle where the start of high-temperature heat release normally occurs (-5° ATDC). In the present study the measured in-cylinder images are compared with a fully resolved three-dimensional CFD model, namely KIVA3V-RANS simulations.
Journal Article

Comprehensive Assessment of Soot Particles from Waste Cooking Oil Biodiesel and Diesel in a Compression Ignition Engine

2015-04-14
2015-01-0809
The effect of biodiesel produced from waste cooking oil (WCO) on the soot particles in a compression ignition engine was investigated and compared with conventional diesel fuel. The indicated mean effective pressure of approximately 0.65 MPa was tested under an engine speed of 1200 revolutions per minute. The fuels were injected at an injection timing of −5 crank angle degree after top dead center with injection pressures of 80 MPa. Detailed characteristics of particulate matters were analyzed in terms of transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and elemental analysis. Soot aggregates were collected on TEM grid by thermophoretic sampling device installed in the exhaust pipe of the engine. High-resolution TEM images revealed that the WCO biodiesel soot was composed of smaller primary particle than diesel soot. The mean primary particle diameter was measured as 19.9 nm for WCO biodiesel and 23.7 nm for diesel, respectively.
Technical Paper

Detailed Characterization of Morphology and Dimensions of Diesel Particulates via Thermophoretic Sampling

2001-09-24
2001-01-3572
A thermophoretic particulate sampling device was used to investigate the detailed morphology and microstructure of diesel particulates at various engine-operating conditions. A 75 HP Caterpillar single-cylinder direct-injection diesel engine was operated to sample particulate matter from the high-temperature exhaust stream. The morphology and microstructure of the collected diesel particulates were analyzed using a high-resolution transmission electron microscope and subsequent image processing/data acquisition system. The analysis revealed that spherical primary particles were agglomerated together to form large aggregate clusters for most of engine speed and load conditions. Measured primary particle sizes ranged from 34.4 to 28.5 nm at various engine-operating conditions. The smaller primary particles observed at high engine-operating conditions were believed to be caused by particle oxidation at the high combustion temperature.
Journal Article

Detailed Unburned Hydrocarbon Investigations in a Highly-Dilute Diesel Low Temperature Combustion Regime

2009-04-20
2009-01-0928
The objective of this research is a detailed investigation of unburned hydrocarbon (UHC) in a highly-dilute diesel low temperature combustion (LTC) regime. This research concentrates on understanding the mechanisms that control the formation of UHC via experiments and simulations in a 0.48L signal-cylinder light duty engine operating at 2000 r/min and 5.5 bar IMEP with multiple injections. A multi-gas FTIR along with other gas and smoke emissions instruments are used to measure exhaust UHC species and other emissions. Controlled experiments in the single-cylinder engine are then combined with three computational tools, namely heat release analysis of measured cylinder pressure, analysis of spray trajectory with a phenomenological spray model using in-cylinder thermodynamics [1], and KIVA-3V Chemkin CFD computations recently tested at LTC conditions [2].
Technical Paper

Development and Validation of a Comprehensive CFD Model of Diesel Spray Atomization Accounting for High Weber Numbers

2006-04-03
2006-01-1546
Modern diesel engines operate under injection pressures varying from 30 to 200 MPa and employ combinations of very early and conventional injection timings to achieve partially homogeneous mixtures. The variety of injection and cylinder pressures results in droplet atomization under a wide range of Weber numbers. The high injection velocities lead to fast jet disintegration and secondary droplet atomization under shear and catastrophic breakup mechanisms. The primary atomization of the liquid jet is modeled considering the effects of both infinitesimal wave growth on the jet surface and jet turbulence. Modeling of the secondary atomization is based on a combination of a drop fragmentation analysis and a boundary layer stripping mechanism of the resulting fragments for high Weber numbers. The drop fragmentation process is predicted from instability considerations on the surface of the liquid drop.
Technical Paper

Development of a Reduced Chemical Kinetic Mechanism and Ignition Delay Measurement in a Rapid Compression Machine for CAI Combustion

2007-04-16
2007-01-0218
A reduced chemical kinetic mechanism for a gasoline surrogate was developed and validated in this study for CAI (Controlled Auto Ignition) combustion. The gasoline surrogate was modeled as a blend of iso-octane, n-heptane, and toluene. This reduced mechanism consisted of 44 species and 59 reactions, including main reaction paths of iso-octane, n-heptane, and toluene. The ignition delay times calculated from this mechanism showed a good agreement with previous experimental data from shock tube measurement. A rapid compression machine (RCM) was developed and used to measure the ignition delay times of gasoline and surrogate fuels in the temperature range of 890K ∼ 1000K. The RCM experimental results were also compared with the RCM simulation using the reduced mechanism. It was found that the chemical reaction started before the end of the compression process in the RCM experiment. And the ignition delay time of the suggested gasoline surrogate was similar to that of gasoline.
X