Refine Your Search

Topic

Author

Search Results

Technical Paper

3-D CFD Analysis of CO Formation in Diesel Combustion - The use of intake air throttling to create reducing atmospheres for NSR catalysts -

2011-08-30
2011-01-1841
The efficiency of the NOx Storage and Reduction (NSR) catalysts used in the aftertreatment of diesel engine exhaust gases can potentially be increased by using reactive reductants such as CO and H₂ that are formed during in-cylinder combustion. In this study, a multi-dimensional computational fluid dynamics (CFD) code coupled with complex chemical analysis was used to study combustion with various fuel after-injection patterns. The results obtained will be useful in designing fuel injection strategies for the efficient formation of CO.
Technical Paper

3D Simulationson Premixed Laminar Flame Propagation of iso-Octane/Air Mixture at Elevated Pressure and Temperature

2015-03-10
2015-01-0015
This paper aims to validate chemical kinetic mechanisms of surrogate gasoline three components fuel by calculating one-dimensional laminar burning velocity of iso-octane/air mixture. Next, the application of level-set method on premixed combustion without consideration the effect of turbulence eddies on flame front is also studied in three-dimensional computational fluid dynamic (3D-CFD) simulation. In the 3D CFD simulation, there is an option to calculate laminar burning velocity by using empirical correlations, however it is applicable only for particular initial pressure and temperature in spark ignition engine cases. One-dimensional burning velocities from lean to rich of iso-octane/air mixture are calculated by using CHEMKIN-PRO with detailed chemistry and transport phenomena as a function of different equivalence ratios, different unburnt temperature and pressure ranges.
Technical Paper

A Fundamental Study on Combustion Characteristics in a Pre-Chamber Type Lean Burn Natural Gas Engine

2019-09-09
2019-24-0123
Pre-chamber spark ignition technology can stabilize combustion and improve thermal efficiency of lean burn natural gas engines. During compression stroke, a homogeneous lean mixture is introduced into pre-chamber, which separates spark plug electrodes from turbulent flow field. After the pre-chamber mixture is ignited, the burnt jet gas is discharged through multi-hole nozzles which promotes combustion of the lean mixture in the main chamber due to turbulence caused by high speed jet and multi-points ignition. However, details mechanism in the process has not been elucidated. To design the pre-chamber geometry and to achieve stable combustion under the lean condition for such engines, it is important to understand the fundamental aspects of the combustion process. In this study, a high-speed video camera with a 306 nm band-pass filer and an image intensifier is used to visualize OH* self-luminosity in rapid compression-expansion machine experiment.
Technical Paper

A Novel Integrated Series Hybrid Electric Vehicle Model Reveals Possibilities for Reducing Fuel Consumption and Improving Exhaust Gas Purification Performance

2021-09-21
2021-01-1244
This paper describes the development of an integrated simulation model for evaluating the effects of electrically heating the three-way catalyst (TWC) in a series hybrid electric vehicle (s-HEV) on fuel economy and exhaust gas purification performance. Engine and TWC models were developed in GT-Power to predict exhaust emissions during transient operation. These models were validated against data from vehicle tests using a chassis dynamometer and integrated into an s-HEV model built in MATLAB/Simulink. The s-HEV model accurately reproduced the performance characteristics of the vehicle’s engine, motor, generator, and battery during WLTC mode operation. It can thus be used to predict the fuel consumption, emissions, and performance of individual powertrain components. The engine combustion characteristics were reproduced with reasonable accuracy for the first 50 combustion cycles, representing the cold-start condition of the driving mode.
Journal Article

A Numerical Study of the Effects of FAME Blends on Diesel Combustion and Emissions Characteristics Using a 3-D CFD Code Combined with Detailed Kinetics and Phenomenological Soot Formation Models

2013-10-14
2013-01-2689
The objective of the present research is to analyze the effects of using oxygenated fuels (FAMEs) on diesel engine combustion and emission (NOx and soot). We studied methyl oleate (MO), which is an oxygenated fuel representative of major constituents of many types of biodiesels. Engine tests and numerical simulations were performed for 100% MO (MO100), 40% MO blended with JIS#2 diesel (MO40) and JIS#2 diesel (D100). The effects of MO on diesel combustion and emission characteristics were studied under engine operating conditions typically encountered in passenger car diesel engines, focusing on important parameters such as pilot injection, injection pressure and exhaust gas recirculation (EGR) rate. We used a diesel engine complying with the EURO4 emissions regulation, having a displacement of 2.2 L for passenger car applications. In engine tests comparing MO with diesel fuel, no effect on engine combustion pressure was observed for all conditions tested.
Technical Paper

A Numerical Study on Combustion and Exhaust Gas Emissions Characteristics of a Dual Fuel Natural Gas Engine Using a Multi-Dimensional Model Combined With Detailed Kinetics

2002-05-06
2002-01-1750
A numerical study was carried out to investigate combustion characteristics of a dual-fuel gas diesel engine, using a multi-dimensional model combined with detailed chemical kinetics, including 43 chemical species and 173 elementary reactions. In calculations, the effects of initial temperature, EGR ratios on ignition, and combustion were examined. The results indicated EGR combined with intake preheating can favorably reduced NOx and THC emissions simultaneously. This can be explained by the fact that combustion mechanism is changed from flame propagation to HCCl like combustion.
Technical Paper

A Numerical Study on Combustion and Exhaust Gas Emissions Characteristics of a Dual Fuel Natural Gas Engine Using a Multi-Dimensional Model Combined with Detailed Kinetics

2003-05-19
2003-01-1939
Natural gas pre-mixture is ignited by a small amount of pilot fuel in the dual fuel engine. In this paper, numerical studies were carried out to investigate the combustion and exhaust gas emissions formation process of this engine type by using a multi dimensional model combined with the detailed chemical kinetics including 57 chemical species and 290 elementary reactions. In calculation, the effect of the pre-mixture concentration on combustion was examined. The result indicated that the increased concentration of natural gas could improve the burning fraction and THC, CO emissions due to the increased pre-mixture consumption rate and the cylinders gas temperature.
Technical Paper

A Numerical Study on Predicting Combustion Chamber Wall Surface Temperature Distributions in a Diesel Engine and their Effects on Combustion, Emission and Heat Loss Characteristics by Using a 3D-CFD Code Combined with a Detailed Heat Transfer Model

2015-09-01
2015-01-1847
A three-dimensional computational fluid dynamics (3D-CFD) code was combined with a detailed combustion chamber heat transfer model. The established model allowed not only prediction of instantaneous combustion chamber wall surface temperature distributions in practical calculation time but also investigation of the characteristics of combustion, emissions and heat losses affected by the wall temperature distributions. Although zero-dimensional combustion analysis can consider temporal changes in the heat transfer coefficient and in-cylinder gas temperature, it cannot take into account the effect of interactions between spatially distributed charge and wall temperatures. In contrast, 3D-CFD analysis can consider temporal and spatial changes in both parameters. However, in most zero-/multi- dimensional combustion analyses, wall temperatures are assumed to be temporally constant and spatially homogeneous.
Technical Paper

A Study on Combustion Characteristics of a High Compression Ratio SI Engine with High Pressure Gasoline Injection

2019-09-09
2019-24-0106
In order to improve thermal efficiency of spark ignition (SI) engines, an improved technology to avoid irregular combustion under high load conditions of high compression ratio SI engines is required. In this study, the authors focused on high pressure gasoline direct injection in a high compression ratio SI engine, which its rapid air-fuel mixture formation, turbulence, and flame speed, are enhanced by high-speed fuel spray jet. Effects of fuel injection pressure, injection and spark ignition timing on combustion characteristics were experimentally and numerically investigated. It was found that the heat release rate was drastically increased by raising the fuel injection pressure. The numerical simulation results show that the high pressure gasoline direct injection enhanced small-scale turbulent intensity and fuel evaporation, simultaneously.
Technical Paper

A Study on Optimizing SHEV Components Specifications and Control Parameter Values for the Reduction of Fuel Consumption by Using a Genetic Algorithm

2022-03-29
2022-01-0655
For a series hybrid electric vehicle (SHEV), the electric motor is responsible for driving the wheels, while the engine drives the only generator to provide electricity. SHEVs set a control strategy to make the engine run near the fixed operating point with high thermal efficiency, thereby effectively reducing fuel consumption. The powertrain system of HEV is more complex than that of a conventional drive system using only an internal combustion engine, and it is time-consuming to obtain the optimal components specification values and control parameters. Therefore, automatic optimization methods are required nowadays. We used Genetic Algorithm (GA) as the optimization method and optimize powertrain specifications and control parameter values to reduce fuel consumption. The results show that it is an effective optimization method.
Technical Paper

A Study on Prediction of Unburned Hydrocarbons in Active Pre-chamber Gas Engine: Combustion Analysis Using 3D-CFD by Considering Wall Quenching Effects

2021-09-05
2021-24-0049
To reproduce wall quenching phenomena using 3D-CFD, a wall quenching model was constructed based on the Peclet number. The model was further integrated with the flame propagation model. Combustion analysis showed that that a large amount of unburned hydrocarbons (UHCs) remained in the piston clevis and small gaps. Furthermore, the model was capable of predicting the increase in UHC emissions when there was a delay in the ignition time. The flame front cells were plotted on Peters' premixed turbulent combustion diagram to identify transitions in the combustion states. It was found that the flame surface transitioned from corrugated flamelets through thin reaction zones to wrinkled flamelets and further to laminar flamelets, which led to wall quenching. The turbulent Reynolds number (Re) decreased rapidly due to the increase in laminar flame speed and flame thickness and the decrease in turbulent intensity and turbulent scale.
Technical Paper

A Study on the Characteristics of Natural Gas Combustion at a High Compression Ratio by Using a Rapid Compression and Expansion Machine

2012-09-10
2012-01-1651
Natural gas is an attractive alternative fuel for internal combustion engines. Homogeneous charge compression ignition (HCCI) combustion is considered to be one of the most promising measures for increasing thermal efficiency and reducing emissions, but it is difficult to control and stabilize its ignition and combustion processes. This paper describes an experimental study of natural gas combustion utilizing two types of ignition assistance. Spark assistance, which is used for conventional spark ignition (SI) engines, and pilot diesel injection, hereinafter called diesel pilot, which generates multiple ignition points by using a small injection of diesel that accounts for 2% of the total heat release for the cycle. The performance of these two approaches was compared with respect to various combustion characteristics when burning homogeneous natural gas mixtures at a high compression ratio.
Technical Paper

Achievement of Medium Engine Speed and Load Premixed Diesel Combustion with Variable Valve Timing

2006-04-03
2006-01-0203
A variable valve timing (VVT) mechanism was applied to achieve premixed diesel combustion at higher load for low emissions and high thermal efficiency in a light duty diesel engine. By means of late intake valve closing (LIVC), compressed gas temperatures near the top dead center are lowered, thereby preventing too early ignition and increasing ignition delay to enhance fuel-air mixing. The variability of effective compression ratio has significant potential for ignition timing control of conventional diesel fuel mixtures. At the same time, the expansion ratio is kept constant to ensure thermal efficiency. Combining the control of LIVC, EGR, supercharging systems and high-pressure fuel injection equipment can simultaneously reduce NOx and smoke. The NOx and smoke suppression mechanism in the premixed diesel combustion was analyzed using the 3D-CFD code combined with detailed chemistry.
Journal Article

An Investigation on the Ignition Characteristics of Lubricant Component Containing Fuel Droplets Using Rapid Compression and Expansion Machine

2016-10-17
2016-01-2168
With the development of downsized spark ignition (SI) engines, low-speed pre-ignition (LSPI) has been observed more frequently as an abnormal combustion phenomenon, and there is a critical need to solve this issue. It has been acknowledged that LSPI is not directly triggered by autoignition of the fuel, but by some other material with a short ignition delay time. It was previously reported that LSPI can be caused by droplets of lubricant oil intermixed with the fuel. In this work, the ignition behavior of lubricant component containing fuel droplets was experimentally investigated by using a constant volume chamber (CVC) and a rapid compression and expansion machine (RCEM), which enable visualization of the combustion process in the cylinder. Various combinations of fuel compositions for the ambient fuel-air mixture and fractions of base oil/metallic additives/fuel for droplets were tested.
Technical Paper

Avoidance Algorithm Development to Control Unrealistic Operating Conditions of Diesel Engine Systems under Transient Conditions

2021-09-05
2021-24-0025
Emission regulations are becoming tighter, and Real Driving Emissions (RDE) is proposed as a testing cycle for evaluating modern engine emissions under a wide operation range. For this reason, engine manufacturers have been developing a method to effectively assess engine performances and emissions under a wide range of transient conditions. Transient engine performances can be evaluated efficiently by applying time-series data created by chirp signals. However, when the time-series data produced by the chirp signal are used directly, the engine hardware may damage, and emission performances deteriorate drastically. It is therefore essential to develop a method to avoid these undesirable operating conditions. This work aims to develop an algorithm to avoid such unrealistic operation conditions for engine performance evaluation. A virtual diesel engine (VDE) model is developed based on a four-cylinder engine using GT-POWER software.
Technical Paper

Computational Study to Improve Thermal Efficiency of Spark Ignition Engine

2015-03-10
2015-01-0011
The objective of this paper is to investigate the potential of lean burn combustion to improve the thermal efficiency of spark ignition engine. Experiments used a single cylinder gasoline spark ignition engine fueled with primary reference fuel of octane number 90, running at 4000 revolution per minute and at wide open throttle. Experiments were conducted at constant fueling rate and in order to lean the mixture, more air is introduced by boosted pressure from stoichiometric mixture to lean limit while maintaining the high output engine torque as possible. Experimental results show that the highest thermal efficiency is obtained at excess air ratio of 1.3 combined with absolute boosted pressure of 117 kPa. Three dimensional computational fluid dynamic simulation with detailed chemical reactions was conducted and compared with results obtained from experiments as based points.
Technical Paper

Controlling Combustion Characteristics Using a Slit Nozzle in a Direct-Injection Methanol Engine

1994-10-01
941909
A new type of fuel injection nozzle, called a “slit nozzle,” has been developed to improve poor ignitability and to stabilize combustion under low load conditions in direct-injection methanol diesel engines manufactured for medium-duty trucks. This nozzle has a single oblong vent like a slit. Engine test results indicate that the slit nozzle can improve combustion and thermal efficiency, especially at low loads and no load. This can be explained by the fact that the slit nozzle forms a more highly concentrated methanol spray around the glow-plug than do multi-hole nozzles. As a result, this nozzle improves flame propagation.
Technical Paper

Detailed Analysis of Particulate Matter Emitted from Biofueled Diesel Combustion with High EGR

2009-04-20
2009-01-0483
Difference of engine combustion characteristics, species and amount of exhaust gas and PM (particulate matter consisted of SOF and Soot and Ash), and especially PM oxidation characteristics were studied when diesel fuel or bio-fuel, here PME (palm oil methyl ester) as an example, was used as a fuel. The fueling rate was adjusted to obtain the same torque for both fuels and engine was operated under several range of EGR (Exhaust Gas Recirculation) ratio. Under such conditions, PME showed shorter ignition delay time and lower R.H.R (rate of heat release) under 0-40% EGR ratio. With respect to engine exhaust gas species, CO, NO, THC and HCHO, CH3CHO concentration was almost the same when the EGR ratio is higher than 35% (Intake-Air/Fuel: A/F=20). However, PME also showed lower exhaust gas emission when the EGR ratio is higher than 30%.
Technical Paper

Development and Comparison of Virtual Sensors Constructed using AI Techniques to Estimate the Performances of IC Engines

2022-08-30
2022-01-1064
Alternative propulsion systems such as renewable fuels and electric powertrains are expensive; thus, efficient internal combustion engines (ICE) with hybrid powertrains still play significant roles in the transportation fleet in the coming decades. Modern engine technologies have been adopted to meet stringent emissions and fuel economy standards. As a result, engine control systems are becoming more complex. Furthermore, as ICE control parameters increase exponentially, engine calibration and design become bottlenecks in the development process. While a map-based feed-forward control method is a current de facto standard in combustion control, online closed-loop feedback control can improve engine performance and robustness. However, adding physical sensors to measure the various data for the online feedback control and calibration increase the vehicle cost.
Technical Paper

Development and Improvement of an Ultra Lightweight Hybrid Electric Vehicle

2003-03-03
2003-01-2011
An experimental ultra lightweight compact vehicle named “the Waseda Future Vehicle” has been designed and developed, aiming at a simultaneous achievement of low exhaust gas emissions, high fuel economy and driving performance. The vehicle is powered by a dual-type hybrid system having a SI engine, electric motor and generator. A high performance lithium-ion battery unit is used for electricity storage. A variety of driving cycles were reproduced using the hybrid vehicle on a chassis dynamometer. By changing the logics and parameters in the electronic control unit (ECU) of the engine, a significant improvement in emissions was possible, achieving a very high fuel economy of 34 km/h at the Japanese 10-15 drive mode. At the same time, a numerical simulation model has been developed to predict fuel economy. This would be very useful in determining design factors and optimizing operating conditions in the hybrid power system.
X