Refine Your Search

Topic

Search Results

Technical Paper

A Decision Analytic Approach to Incorporating Value of Information in Autonomous Systems

2018-04-03
2018-01-0799
Selecting the right transportation platform is challenging, whether it is at a personal level or at an organizational level. In settings where predominantly the functional aspects rule the decision making process, defining the mobility of a vehicle is critical for comparing different offerings and making acquisition decisions. With the advent of intelligent vehicles, exhibiting partial to full autonomy, this challenge is exacerbated. The same vehicle may traverse independently and with greater tolerance for acceleration than human occupied vehicles, while, at the same time struggle with obstacle avoidance. The problem presents itself at the individual vehicle sensing level and also at the vehicle/fleet level. At the sensing and information level, one can be looking at issues of latency, bandwidth and optimal information fusion from multiple sources including privileged sensing. At the overall vehicle level, one focuses more on the ability to complete missions.
Journal Article

A Nonparametric Bootstrap Approach to Variable-size Local-domain Design Optimization and Computer Model Validation

2012-04-16
2012-01-0226
Design optimization often relies on computational models, which are subjected to a validation process to ensure their accuracy. Because validation of computer models in the entire design space can be costly, a recent approach was proposed where design optimization and model validation were concurrently performed using a sequential approach with both fixed and variable-size local domains. The variable-size approach used parametric distributions such as Gaussian to quantify the variability in test data and model predictions, and a maximum likelihood estimation to calibrate the prediction model. Also, a parametric bootstrap method was used to size each local domain. In this article, we generalize the variable-size approach, by not assuming any distribution such as Gaussian. A nonparametric bootstrap methodology is instead used to size the local domains. We expect its generality to be useful in applications where distributional assumptions are difficult to verify, or not met at all.
Journal Article

Assessing Fit and Finish Design Sensitivity by Mapping Measurements to Utility

2020-04-14
2020-01-0600
This paper proposes a method to evaluate the sensitivity of the perceived quality of a panel interface design to variation in the measurements of fit and finish. The novelty of this approach is in the application of the concept of utility to fit and finish. The significance is in the ability to evaluate alternative designs with regard to perceived quality long before time and money are spent on their realization. In the automotive industry “fit and finish” is the term applied to the precision of the alignment of one part to another. Fit and finish gives the buyer a sense of the overall quality of the vehicle purely from an aesthetic perspective. Fit and finish is usually evaluated by the manufacturer through dimensional measurements of the gap and flushness conditions between panels.
Journal Article

Balancing Lifecycle Sustainment Cost with Value of Information during Design Phase

2020-04-14
2020-01-0176
The complete lifecycle of complex systems, such as ground vehicles, consists of multiple phases including design, manufacturing, operation and sustainment (O&S) and finally disposal. For many systems, the majority of the lifecycle costs are incurred during the operation and sustainment phase, specifically in the form of uncertain maintenance costs. Testing and analysis during the design phase, including reliability and supportability analysis, can have a major influence on costs during the O&S phase. However, the cost of the analysis itself must be reconciled with the expected benefits of the reduction in uncertainty. In this paper, we quantify the value of performing the tests and analyses in the design phase by treating it as imperfect information obtained to better estimate uncertain maintenance costs.
Technical Paper

Containerization Approach for High-Fidelity Terramechanics Simulations

2023-04-11
2023-01-0105
Integrated modeling of vehicle, tire and terrain is a fundamental challenge to be addressed for off-road autonomous navigation. The complexities arise due to lack of tools and techniques to predict the continuously varying terrain and environmental conditions and the resultant non-linearities. The solution to this challenge can now be found in the plethora of data driven modeling and control techniques that have gained traction in the last decade. Data driven modeling and control techniques rely on the system’s repeated interaction with the environment to generate a lot of data and then use a function approximator to fit a model for the physical system with the data. Getting good quality and quantity of data may involve extensive experimentation with the physical system impacting developer’s resource. The process is computationally expensive, and the overhead time required is high.
Technical Paper

Decision-Based Universal Design - Using Copulas to Model Disability

2015-04-14
2015-01-0418
This paper develops a design paradigm for universal products. Universal design is term used for designing products and systems that are equally accessible to and usable by people with and without disabilities. Two common challenges for research in this area are that (1) There is a continuum of disabilities making it hard to optimize product features, and (2) There is no effective benchmark for evaluating such products. To exacerbate these issues, data regarding customer disabilities and their preferences is hard to come by. We propose a copula-based approach for modeling market coverage of a portfolio of universal products. The multiattribute preference of customers to purchase a product is modeled as Frank's Archimedean Copula. The inputs from various disparate sources can be collected and incorporated into a decision system.
Journal Article

Decision-Making for Autonomous Mobility Using Remotely Sensed Terrain Parameters in Off-Road Environments

2021-04-06
2021-01-0233
Off-road vehicle operation requires constant decision-making under great uncertainty. Such decisions are multi-faceted and range from acquisition decisions to operational decisions. A major input to these decisions is terrain information in the form of soil properties. This information needs to be propagated to path planning algorithms that augment them with other inputs such as visual terrain assessment and other sensors. In this sequence of steps, many resources are needed, and it is not often clear how best to utilize them. We present an integrated approach where a mission’s overall performance is measured using a multiattribute utility function. This framework allows us to evaluate the value of acquiring terrain information and then its use in path planning. The computational effort of optimizing the vehicle path is also considered and optimized. We present our approach using the data acquired from the Keweenaw Research Center terrains and present some results.
Technical Paper

Decomposition and Coordination to Support Tradespace Analysis for Ground Vehicle Systems

2022-03-29
2022-01-0370
Tradespace analysis is used to define the characteristics of the solution space for a vehicle design problem enabling decision-makers (DMs) to evaluate the risk-benefit posture of a vehicle design program. The tradespace itself is defined by a set of functional objectives defined by vehicle simulations and evaluating the performance of individual design solutions that are modeled by a set of input variables. Of special interest are efficient design solutions because their perfomance is Pareto meaning that none of their functional objective values can be improved without decaying the value of another objective. The functional objectives are derived from a combination of simulations to determine vehicle performance metrics and direct calculations using vehicle characteristics. The vehicle characteristics represent vendor specifications of vehicle subsystems representing various technologies.
Journal Article

Designing the Design Space: Evaluating Best Practices in Tradespace Exploration, Analysis and Decision-Making

2022-03-29
2022-01-0354
Determining the validity of the design space early in the conceptualization of a project can make the difference between project success and failure. Early assessment of technical feasibility, project risk, technical readiness and realistic performance expectations based on models with different levels of fidelity, uncertainty, and technical robustness is a challenging mission critical task for large procurement projects. Tradespace exploration uses model-based engineering analysis, design exploration methods, and multi-objective optimization techniques to enable project stakeholders to make informed decisions and tradeoffs concerning the scope, schedule, budget, performance and risk profile of a project. As the intersection with a number of project stakeholders, tradespace studies can provide a significant impact upon the direction and decision-making in a project.
Technical Paper

Effects of Framing on Tradespace Exploration Decision-Making for Vehicle Design

2024-04-09
2024-01-2660
Tradespace exploration (TSE) describes the activity occurring early in the design process through which stakeholders explore a broad solution space in search of more-optimal alternatives. In doing so, these stakeholders attempt to maximize the utility inherent in the chosen solution while understanding the tradeoffs and compromises that may be required to find an acceptable solution. In the field of vehicle design, tradespaces are often comprised of vast amounts of alternatives which increases the complexity of the decision-making process. Additionally, the number of stakeholders has grown, as decision-makers seek to include more variety in both perspectives and expertise. As such, decision-making stakeholders can often find themselves working at odds and attempting to maximize vastly different objectives in the process. One way to rectify these contrasting viewpoints can be to intentionally introduce a group framing prior to the start of decision making.
Journal Article

Elicitation, Computational Representation, and Analysis of Mission and System Requirements

2022-03-29
2022-01-0363
Strategies for evaluating the impact of mission requirements on the design of mission-specific vehicles are needed to enable project managers to assess potential benefits and associated costs of changes in requirements. Top-level requirements that cause significant cascaded difficulties on lower-level requirements should be identified and presented to decision-makers. This paper aims to introduce formal methods and computational tools to enable the analysis and allocation of mission requirements.
Technical Paper

Exploration of Support Methods for Tradespace Exploration

2023-04-11
2023-01-0117
Tradespace exploration (TSE) is an important aspect of the early stages of the design process, in which stakeholders search for the most optimal solutions within a design variable-bounded solution space. This decision-making process requires stakeholders to understand the trade-offs and compromises that may be required to choose a solution. In order for stakeholders to make these decisions appropriately, information must be presented in an efficient manner and should ensure that the trade-offs between solutions are clearly visible. Existing visualizations often struggle to elucidate these trade-offs, and can rapidly become difficult to understand as the dimensionality of the tradespace increases. In this paper, the benefits and drawbacks to these existing methods will be discussed. In addition, this paper will explore potential methods to improve information presentation for TSE, including framing, visual steering, and visualization options.
Journal Article

Flexible Design and Operation of a Smart Charging Microgrid

2014-04-01
2014-01-0716
The reliability theory of repairable systems is vastly different from that of non-repairable systems. The authors have recently proposed a ‘decision-based’ framework to design and maintain repairable systems for optimal performance and reliability using a set of metrics such as minimum failure free period, number of failures in planning horizon (lifecycle), and cost. The optimal solution includes the initial design, the system maintenance throughout the planning horizon, and the protocol to operate the system. In this work, we extend this idea by incorporating flexibility and demonstrate our approach using a smart charging electric microgrid architecture. The flexibility is realized by allowing the architecture to change with time. Our approach “learns” the working characteristics of the microgrid. We use actual load and supply data over a short time to quantify the load and supply random processes and also establish the correlation between them.
Technical Paper

Health Monitoring for Condition-Based Maintenance of a HMMWV using an Instrumented Diagnostic Cleat

2009-04-20
2009-01-0806
Operation & support costs for military weapon systems accounted for approximately 3/5th of the $500B Department of Defense budget in 2006. In an effort to ensure readiness and decrease these costs for ground vehicle fleets, health monitoring technologies are being developed for Condition-Based Maintenance of individual vehicles within a fleet. Dynamics-based health monitoring is used in this work because vibrations are a passive source of response data, which are global functions of the mechanical loading and properties of the vehicle. A common way of detecting faults in mechanical equipment, such as the suspension and chassis of a ground vehicle, is to compare measured operational vibrations to a reference (or healthy) signature to detect anomalies.
Technical Paper

High Dimensional Preference Learning: Topological Data Analysis Informed Sampling for Engineering Decision Making

2024-04-09
2024-01-2422
Engineering design-decisions often involve many attributes which can differ in the levels of their importance to the decision maker (DM), while also exhibiting complex statistical relationships. Learning a decision-making policy which accurately represents the DM’s actions has long been the goal of decision analysts. To circumvent elicitation and modeling issues, this process is often oversimplified in how many factors are considered and how complicated the relationships considered between them are. Without these simplifications, the classical lottery-based preference elicitation is overly expensive, and the responses degrade rapidly in quality as the number of attributes increase. In this paper, we investigate the ability of deep preference machine learning to model high-dimensional decision-making policies utilizing rankings elicited from decision makers.
Journal Article

Managing the Computational Cost of Monte Carlo Simulation with Importance Sampling by Considering the Value of Information

2013-04-08
2013-01-0943
Importance Sampling is a popular method for reliability assessment. Although it is significantly more efficient than standard Monte Carlo simulation if a suitable sampling distribution is used, in many design problems it is too expensive. The authors have previously proposed a method to manage the computational cost in standard Monte Carlo simulation that views design as a choice among alternatives with uncertain reliabilities. Information from simulation has value only if it helps the designer make a better choice among the alternatives. This paper extends their method to Importance Sampling. First, the designer estimates the prior probability density functions of the reliabilities of the alternative designs and calculates the expected utility of the choice of the best design. Subsequently, the designer estimates the likelihood function of the probability of failure by performing an initial simulation with Importance Sampling.
Technical Paper

Military Unmanned Ground Vehicle Maneuver: A Review and Formulation

2023-04-11
2023-01-0108
A state-of-the-art review of the technical meaning and application of the term ‘maneuver’, used by the U.S. Army and ground vehicle engineering communities, was performed with regard to various military activities, including modeling and simulation (M&S), to focus on the value and applicability of the term to military vehicle dynamics. As shown, U.S. military doctrine has built through history and experience a unique concept of maneuver-in-general and its application in U.S. Army unified land operations. Yet, the term ‘maneuver’ needs further technical categorization and characterization for the purpose of dynamics of military unmanned ground vehicles (UGVs) and vehicle design for maneuver. While the NHTSA and SAE standards and definitions provide solid foundations for M&S of cars and trucks to enhance the safety of those vehicles (manned and autonomous), occupants, and pedestrians on roads, the standards cannot address all needs of military vehicles in maneuver.
Technical Paper

Mobility Boundaries for the Wheel Normal Reaction

2022-03-29
2022-01-0360
When a vehicle moves over uneven ground, motion of the sprung and unsprung masses causes dynamic shifting in the load transmitted to the ground, making the normal reaction in the tire-soil patch a continuously changing wheel parameter that may affect vehicle performance. At high loads, sinkage of the wheel can become high as the wheel digs into the soil. At low loads, the wheel can have difficulty acquiring sufficient traction. Additionally, steerability of the wheel can be diminished at very low loads. Controlling the damping forces in the suspension that is usually used to improve ride quality and stabilize motion of the sprung mass can result in an increase in the dynamic variation of the wheel normal reaction and cause vehicle performance deterioration. In this paper, a method is developed to establish boundary constraints on the dynamic normal reaction to maintain reasonable tire-terrain mobility characteristics.
Journal Article

Multi-Objective Decision Making under Uncertainty and Incomplete Knowledge of Designer Preferences

2011-04-12
2011-01-1080
Multi-attribute decision making and multi-objective optimization complement each other. Often, while making design decisions involving multiple attributes, a Pareto front is generated using a multi-objective optimizer. The end user then chooses the optimal design from the Pareto front based on his/her preferences. This seemingly simple methodology requires sufficient modification if uncertainty is present. We explore two kinds of uncertainties in this paper: uncertainty in the decision variables which we call inherent design problem (IDP) uncertainty and that in knowledge of the preferences of the decision maker which we refer to as preference assessment (PA) uncertainty. From a purely utility theory perspective a rational decision maker maximizes his or her expected multi attribute utility.
Technical Paper

Reconciling Simultaneous Evolution of Ground Vehicle Capabilities and Operator Preferences

2020-04-14
2020-01-0172
An objective evaluation of ground vehicle performance is a challenging task. This is further exacerbated by the increasing level of autonomy, dynamically changing the roles and capabilities of these vehicles. In the context of decision making involving these vehicles, as the capabilities of the vehicles improve, there is a concurrent change in the preferences of the decision makers operating the vehicles that must be accounted for. Decision based methods are a natural choice when multiple conflicting attributes are present, however, most of the literature focuses on static preferences. In this paper, we provide a sequential Bayesian framework to accommodate time varying preferences. The utility function is considered a stochastic function with the shape parameters themselves being random variables. In the proposed approach, initially the shape parameters model either uncertain preferences or variation in the preferences because of the presence of multiple decision makers.
X