Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

04 Emission Reduction by Cylinder Wall Injection in 2-Stroke S.I. Engines

2002-10-29
2002-32-1773
A direct injection system in which fuel was injected through the cylinder wall was developed and detailed investigation was made for the purpose of reducing short-circuit of fuel in 2-stroke engines. As a result of dynamo tests using 430cc single cylinder engine, it was found that the injector was best attached at a location as close to TDC as possible on the rear transfer port side, and that the entire amount of fuel should be injected towards the piston top surface. Emissions were worsened if fuel was injected towards the exhaust port or spark plug. Although the higher injection pressure resulted in large emissions reduction effects, it did not have a significant effect on fuel consumption. When a butterfly exhaust valve, known to be effective against irregular combustion in the light load range, was applied, it was found to lead to further reductions in HC emission and fuel consumption while also improving combustion stability.
Technical Paper

3-D Modeling of Conventional and HCCI Combustion Diesel Engines

2004-10-25
2004-01-2964
An investigation of the possibility to extend the 3-dimensional modeling capabilities from conventional diesel to the HCCI combustion mode simulation was carried out. Experimental data was taken from a single cylinder engine operating with early injections for the HCCI and a split-injection (early pilot+main) for the high speed Diesel engine operation. To properly phase the HCCI mode in the experiments, high amounts of cooled EGR and a decreased compression ratio were used. In numerical simulation performed using KIVA3-V code, modified to incorporate the Detailed Chemistry Approach the same conditions were reproduced. Special attention is paid on the analysis of the events leading up to the auto-ignition, which was reasonably well predicted.
Technical Paper

3D Numerical Simulation of Fuel injection and Combustion Phenomena in DI Diesel Engines

1989-02-01
890668
Recently the analysis of air-fuel mixing and combustion has become important under the stringent emissions regulations of diesel engines. In the case of gasoline engines, the KIVA computer program has been developed and used for the analysis of combustion. In this paper, the calculations of combustion phenomena in DI diesel engines are performed by modifying the KIVA program so as to be applicable to multi-hole nozzles and arbitrary patterns of injection rate. The thermophysical and ther-mochemical properties of gasoline are altered to those diesel fuel. In order to investigate the ability of this modified program, the calculations are compared with the experiments on single cylinder engines concerning the pressure, flame temperature and mass change of chemical species in cylinders. Furthermore, the calculation for the heavy duty DI diesel engine is performed with this diesel combustion program.
Technical Paper

A Comparative Study of Performance and Emission Characteristics of CNG and Gasoline on a Single Cylinder S. I. Engine

2004-01-16
2004-28-0038
In this study some experiments were carried out to evaluate fuel consumption and exhaust emissions of carbon monoxide (CO), oxides of nitrogen (NOx)) and hydrocarbons (HC) with compressed natural gas (CNG) and gasoline in a single cylinder engine. Compressed natural gas showed 3 to 5 percent higher thermal efficiency and 15 percent lower specific fuel consumption as compared to gasoline. Also CO emissions were lower by 30-80 percent in rich zone and NOx by about 12 percent at an equivalence of 1.0. At wide open throttle CNG operation resulted in 10 to 12 percent lower power output. However, thermal efficiency and brake specific fuel consumption (bsfc) was better with CNG as compared to gasoline. Dual spark plug operation increased power output by 3 to 5 percent.
Technical Paper

A Critical Evaluation of the Geared Hypocycloid Mechanism for Internal Combustion Engine Application

1988-02-01
880660
The geared hypocycloid mechanism, a kinematic arrangement that provides a straight-line motion, can be used as the basis for an internal combustion engine. Such an engine would have a number of advantages: Perfect balance can be achieved with any number of cylinders. The straight-line motion eliminates the need for a wrist pin bearing, further allowing a very short piston to be used without danger of cocking. Piston side load is virtually eliminated, and “piston slap” will not occur even with a large piston/cylinder clearance. These features make it particularly attractive for small single cylinder engine applications where vibration is undesirable, and also for the uncooled “adiabatic engines”, in which piston cylinder lubrication and friction are major concerns.
Technical Paper

A DIGITAL COMPUTER SIMULATION FOR SPARK-IGNITED ENGINE CYCLES

1963-01-01
630076
A comprehensive cycle analysis has been developed for four-stroke spark-ignited engines from which the indicated performance of a single cylinder engine was computed with a reasonable degree of accuracy. The step-wise cycle calculations were made using a digital computer. This analysis took into account mixture composition, dissociation, combustion chamber shape (including spark plug location), flame propagation, heat transfer, piston motion, engine speed, spark advance, manifold pressure and temperature, and exhaust pressure. A correlation between the calculated and experimental performance is reported for one engine at a particular operating point. The calculated pressure-time diagram was in good agreement with the experimental one in many respects. The calculated peak pressure was 10 per cent lower and the thermal efficiency 0.8 per cent higher than the measured values. Thus this calculational procedure represents a significant improvement over constant volume cycle approximations.
Technical Paper

A Developing Process of Newly Developed Electromagnetic Valve Actuator - Effect of Design and Operating Parameters

2002-10-21
2002-01-2817
Electromagnetic valve (EMV) actuation system is a new technology for the improvement of fuel efficiency and the reduction of emissions in SI engines. It can provide more flexibility in valve event control compared to conventional variable valve actuation devices. However, a more powerful and efficient actuator design is needed for this technology to be applied in mass production engines. This paper presents the effects of design and operating parameters on the thermal, static and dynamic performances of the actuator. The finite element method (FEM) and computer simulation models are used in predicting the solenoid forces, dynamic characteristics and thermal characteristics of the actuator. Effect of design parameters and operating environment on the actuator performance were verified before making prototypes using the analytical models. To verify the accuracy of the simulation model, experimental study is also carried out on a prototype actuator.
Technical Paper

A High Speed Flow Visualization Study of Fuel Spray Pattern Effect on Mixture Formation in a Low Pressure Direct Injection Gasoline Engine

2007-04-16
2007-01-1411
In developing a direct injection gasoline engine, the in-cylinder fuel air mixing is key to good performance and emissions. High speed visualization in an optically accessible single cylinder engine for direct injection gasoline engine applications is an effective tool to reveal the fuel spray pattern effect on mixture formation The fuel injectors in this study employ the unique multi-hole turbulence nozzles in a PFI-like (Port Fuel Injection) fuel system architecture specifically developed as a Low Pressure Direct Injection (LPDI) fuel injection system. In this study, three injector sprays with a narrow 40° spray angle, a 60°spray angle with 5°offset angle, and a wide 80° spray angle with 10° offset angle were evaluated. Image processing algorithms were developed to analyze the nature of in-cylinder fuel-air mixing and the extent of fuel spray impingement on the cylinder wall.
Technical Paper

A Micrographic Study of Deposit Formation Processes in a Combustion Chamber

1996-10-01
962008
Growing concern about the impact of combustion chamber deposits (CCD) on engine performance and exhaust emissions has renewed interest in understanding the deposit formation process in a combustion chamber. To provide a true picture of the deposit formation process, an extensive micrographic study of the deposits in a single cylinder engine has been conducted. Four retrievable deposit sampling probes were used. The sampling period for the deposits varied from 15 minutes to 20 hours to show how the deposits evolved with time. The coolant temperature was changed from 50°C to 95°C to observe the effect of surface temperature on deposit morphology. Impacts of deposit control additives on the deposit distribution and deposit morphology were also investigated. Deposits formed in different parts of the combustion chamber differed significantly in their morphology. The differences occur mainly because of variations in surface temperature.
Technical Paper

A Mixing Timescale Model for PDF Simulations of LTC Combustion Process in Internal Combustion Engines

2019-09-09
2019-24-0113
Transported probability density function (PDF) methods are currently being pursued as a viable approach to model the effects of turbulent mixing and mixture stratification, especially for new alternative combustion modes as for example Homogeneous Charge Compression ignition (HCCI) which is one of the advanced low temperature combustion (LTC) concepts. Recently, they have been applied to simple engine configurations to demonstrate the importance of accurate accounting for turbulence/chemistry interactions. PDF methods can explicitly account for the turbulent fluctuations in species composition and temperature relative to mean value. The choice of the mixing model is an important aspect of PDF approach. Different mixing models can be found in the literature, the most popular is the IEM model (Interaction by Exchange with the Mean). This model is very similar to the LMSE model (Linear Mean Square Estimation).
Technical Paper

A New Combustion Chamber for Fast-Burn Applications

1986-02-01
860319
A new combustion chamber design is proposed in which it is possible to control the scale and intensity of turbulence generated just prior to ignition. A single cylinder engine has been fitted with the new chamber, and measurements of the turbulence field with a hot-wire anemometer are presented. The chamber design has been compared to a conventional bowl-in-piston design under both motoring and fired operation. Hotwire measurements showed an increase in turbulence intensity of 50% and a reduction in the length scale of turbulence compared to the conventional chamber. Cylinder pressure measurements indicated that the mass-burn rate is increased with the new chamber, particularly during the early stage of combustion. During operation at 1140 rpm with the new chamber, peak cylinder pressure was 4% higher and occurred 3° earlier than for the conventional chamber.
Technical Paper

A New Flame Jet Concept to Improve the Inflammation of Lean Burn Mixtures in SI Engines

2005-10-24
2005-01-3688
Engines with gasoline direct injection promise an increase in efficiency mainly due to the overall lean mixture and reduced pumping losses at part load. But the near stoichiometric combustion of the stratified mixture with high combustion temperature leads to high NOx emissions. The need for expensive lean NOx catalysts in combination with complex operation strategies may reduce the advantages in efficiency significantly. The Bowl-Prechamber-Ignition (BPI) concept with flame jet ignition was developed to ignite premixed lean mixtures in DISI engines. The mainly homogeneous lean mixture leads to low combustion temperatures and subsequently to low NOx emissions. By additional EGR a further reduction of the combustion temperature is achievable. The BPI concept is realized by a prechamber spark plug and a piston bowl. The main feature of the concept is its dual injection strategy.
Journal Article

A New Model to Describe the Heat Transfer in HCCI Gasoline Engines

2009-04-20
2009-01-0129
In this work, heat loss was investigated in two different HCCI single cylinder engines. Thermocouples were adapted to the surfaces of the cylinder heads and the temperature oscillations were detected in a wide range of the engine operation maps. The resultant heat transfer profiles were compared to the heat losses predicted by existing models. As major discrepancies were stated, a new phenomenological model was developed that is well-manageable and describes the heat loss in HCCI mode more precisely than existing models. To analyze the insulating effect of deposits, the heat transfer equation was solved analytically by an approach that allows consideration of multiple layers with different material properties and thickness. This approach was used for the first time in conjunction with engines to calculate the heat flux at the surface of deposits and the deposit thickness.
Technical Paper

A New Phenomenological Model for Combustion and Performance Studies of Direct Injection Diesel Engines

2007-07-23
2007-01-1904
A computer simulation of a four-stroke turbocharged diesel engine has been developed for combustion and performance studies. The combustion model accounts for spray geometry evolution, ignition delay, heat release rate, equilibrium product concentrations and heat transfer evaluation. In the model, the fuel spray is divided into five zones which are treated as open systems. While mass and energy equations are solved for each zone, a simplified momentum conservation equation is used to calculate the amount of air entrained into each zone. Details of the DI spray, combustion model and its implementation into the open cycle simulation are described in this paper. The model is validated by experimental data. First, prediction of spray penetration is validated against measurements in a pressurized constant volume chamber.
Technical Paper

A New Piston Design for a Cross-Scavenged Two-Stroke Cycle Engine with Improved Scavenging and Combustion Characteristics

1984-09-01
841096
This paper describes a unique design of deflector piston for a cross-scavenged two-stroke cycle engine which incorporates the advantages of good scavenging, rapid combustion and reduced thermal loading on the piston. Test results are presented to confirm this statement from two small capacity outboard marine engines and comparisons are made between the experimental test results from the modified and standard power units; of significance is the reduced fuel consumption rate of the modified engines in both cases. A high bmep 400 cm3 single cylinder engine is designed, constructed and tested so as to determine the extent of deflector burning under conditions of high thermal loading. On all three engines the ignition timing for best power is shown to be in the 21-24° btdc region, by comparison with 32-38° btdc conventionally. The spark plug seat temperatures are reduced to 150 C maximum at peak power by comparison with 250-280 °C normally.
Technical Paper

A Novel Design of Engine Misfire Detection System Suitable for Small Capacity S.I. Engine for Two Wheeled Vehicle

2020-04-14
2020-01-0267
As per the OBD II regulations, it is essential to detect and monitor the misfire event in an I.C. engine. Misfiring of an I.C. engine affects the quality of combustion and degrades the performance of catalyst convertor which can lead to an increase of emissions. Misfire event can be categorized as partial or complete, based on amount of combustion occurred during that particular engine cycle. Most of the production engine for non-two wheeler vehicle identifies misfire by monitoring angular acceleration of the engine crank-shaft. However, single cylinder engine with lower capacity (less than 300 cubic centimeter) provides challenges to identify misfire due to low mechanical inertia of the I.C. engine using the same approach. The problem of misfire identification for this category of I.C. engine turn out to be more challenging due to presence of various load disturbances on the powertrain.
Technical Paper

A Novel Piston Insulation Technique to Simultaneously Improve Both Heat Loss and Thermal Efficiency for Diesel Engines

2021-04-06
2021-01-0453
This study investigates simultaneous improvement in thermal efficiency and cooling loss in the wider operating condition. To suppress the heat flux of the piston, the piston top and cavity were treated with thin thermal spraying of stainless steel. Thermal diffusivity of stainless steel (X5CrNiMo17-12-2, SUS316) is very low in comparison with the forged steel piston raw material (34CrMoS4, SCM435) to sustain local surface temperature at where spray flame directly interfered. In addition, its surface roughness was very fine finished aiming to reduce the convective heat transfer. The experimental results with the stainless-steel coated piston by utilizing a single cylinder engine showed the significant improvement in both cooling loss and thermal efficiency even in higher load operating conditions with compression ratio of 23.5:1.
Technical Paper

A Performance Study of Iso-Butanol-, Methanol-, and Ethanol-Gasoline Blends Using a Single Cylinder Engine

1993-11-01
932953
The objective of this study was to evaluate iso-butanol (C4H9OH) as an alternative fuel for spark ignition engines. Unlike methanol (CH3OH) and ethanol (C2H5OH), iso-butanol has not been extensively studied in the past as either a fuel blend candidate with gasoline or straight fuel. The performance of a single cylinder engine (ASTM=CFR) was studied using alcohol-gasoline blends under different input parameters. The engine operating conditions were: three carburetor settings (three different fuel flow rates), spark timings of 5°, 10°, 15°, 20°, and 25° BTDC, and a range of compression ratios from a minimum of 7.5 to a maximum of 15 in steps of one depending on knock. The fuels tested were alcohol-gasoline blends having 5%, 10%, 15%, and 20% of iso-butanol, ethanol, and methanol. And also as a baseline fuel, pure gasoline (93 ON) was used. The engine was run at a constant speed of 800 RPM.
Technical Paper

A Reliable Single Cylinder Engine Test for Evaluation of Today's Heavy-Duty Diesel Oils for Oil Consumption and Piston Deposits

1988-10-01
881582
This paper reports a lubricant study conducted on a Caterpillar 1Y540 single-cylinder engine test equipped with a 34068 truck production piston. The sequence test, run under well controlled conditions for a large number of CE and CD+ diesel oils, shows a good discrimination of the lubricant for oil consumption and piston deposits and similar to that given by new North American multicylinder engine tests utilizing LTL pistons. Owing to its excellent reliability, adequate severity, and availability of hardware parts, this engine test provides a suitable alternative for replacement of the Caterpillar 1G2 and EMA SCOTE-1.
Technical Paper

A Review of the Effect of Engine Operating Conditions on Borderline Knock

1996-02-01
960497
The effects of engine operating conditions on the octane requirement and the resulting knock-limited output were studied on a single cylinder engine using production cylinder heads. A 4-valve cylinder head with port deactivation was used to study the effect of fuel octane, inlet air temperature, coolant temperature, air/fuel ratio, compression ratio and exhaust back pressure. The effect of the thermal environment was studied in more detail using separate cooling systems for the cylinder head and engine block on a 2-valve cylinder head. The results of this study compared closely with results found in the literature even though the engine and/or operating conditions were quite different in many cases.
X