Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

Analyzing Customer Preference to Product Optional Features in Supporting Product Configuration

2017-03-28
2017-01-0243
For achieving viable mass customization of products, product configuration is often performed that requires deep understanding on the impact of product features and feature combinations on customers’ purchasing behaviors. Existing literature has been traditionally focused on analyzing the impact of common customer demographics and engineering attributes with discrete choice modeling approaches. This paper aims to expand discrete choice modeling through the incorporation of optional product features, such as customers’ positive or negative comments and their satisfaction ratings of their purchased products, beyond those commonly used attributes. The paper utilizes vehicle as an example to highlight the range of optional features currently underutilized in existing models. First, data analysis techniques are used to identify areas of particular consumer interest in regards to vehicle selection.
Technical Paper

Improving Ride Comfort of a Heavy Truck

2018-04-03
2018-01-0135
Ride comfort is simply defined as the vibration performance of the vehicle which is excited by road surface roughness, generally as the vehicle moves at specific constant velocity over the road profile. Ride comfort was an important index for heavy truck, due to long distance transfer and long time driving. In order to improve the ride comfort of a heavy truck, a detailed model, including flex frame, chassis suspension, cab suspension, powertrain, etc., was built and assembled by MSC.ADAMS software. Simulation and testing data were consistent very well, which showed the correctness of the model. The optimization of chassis and cab suspension including the stiffness of the leafspring, the damping of the shock absorber, etc. was carried out to improve the ride comfort of the vehicle. The ride comfort testing was carried out on the proving ground to verify the effectiveness the optimization results. The testing results shows that the ride comfort has been improved after tuning.
Technical Paper

In-Cylinder Flow Characterization of a Hydrogen-Ammonia Fueled Rotary Engine

2023-12-31
2023-01-7073
At present, the problem of global warming is becoming more and more serious, and the transformation of energy structure is very important. The rotary engine has the advantages of small size, high power-to-weight ratio, and high fuel adaptability, which makes it promising for application in the fields of new energy vehicle range extender and unmanned aerial vehicle.
Technical Paper

Influence of Frame Stiffness on Heavy Truck Ride

2016-04-05
2016-01-0449
The stiffness of the frame has a great influence on the ride comfort of the heavy truck. Reducing frame thickness was proved to be unacceptable in terms of ride comfort, which is verified by the testing results. The truck frame was reinforced in order to improve the ride comfort. The modal analysis showed that the pitch frequency of the vehicle has increased 0.5 Hz and the frequency response has decreased by 20%. In order to research the influence of frame stiffness on the heavy truck ride comfort, a detailed model including a flex frame, chassis suspension, cab suspension, driveline, etc., was built by MSC.ADAMS. The Simulation results showed that the ride comfort can be improved by reinforce the frame, and the ride comfort can be improved by 5%∼10%. The results of this study need to be further examined through field testing.
Technical Paper

Multi-domain Modeling and Simulation of AMT Based on Modelica

2011-04-12
2011-01-1237
The automatic mechanical transmission (AMT) was designed by automobile manufacturers to provide a better driving experience, especially in cities where congestion frequently causes stop-and-go traffic patterns. It uses electronic sensors, processors, hydraulic or pneumatic actuators execute clutch actuation and gear shifts on the command of the driver. Such systems coupled with various physical domains have great influence on the dynamic behavior of the vehicle, such as shift quality, driveability, acceleration, etc. This paper presents a detailed AMT model composed of various components from multi-domains like mechanical systems (clutch, gear pair, synchronizer, etc.), pneumatic actuator systems (clutch actuation system, gear select actuation system, gear shift actuation system, etc.). Various components and subsystem models, such as the vehicle, engine, AMT, wheels, etc., are integrated into an overall vehicle system model according to the transmission power flow and control logic.
Technical Paper

Parameters Analysis of on-Center Handling for Articulated Trucks

2018-04-03
2018-01-0136
On-center handling is one of the most important test conditions which are used to evaluate the handling performance of both passenger cars and commercial vehicles. This paper aims at investigating and verifying the influence of parameters on on-center handling of articulated trucks. A full vehicle model, including the steering system, suspension system, cab, frame, trailer and so on, was established in first by measuring the parameters of each component. The comparison of simulation and test results shown that the simulation precision of the vehicle model was up to 80%. Based on the model, the influence analysis of parameters, such as stiffness of steering drag link, steering ratio, kingpin friction, were carried out and were verified through the handling test. The analysis results indicated that larger stiffness of steering drag link, smaller gear ratio could enhance the steer sensitivity and steer stiffness, small kingpin friction is beneficial to the steering return ability.
X