Refine Your Search

Topic

Search Results

Technical Paper

1D Engine Simulation Approach for Optimizing Engine and Exhaust Aftertreatment Thermal Management for Passenger Car Diesel Engines by Means of Variable Valve Train (VVT) Applications

2018-04-03
2018-01-0163
Using a holistic 1D engine simulation approach for the modelling of full-transient engine operation, allows analyzing future engine concepts, including its exhaust gas aftertreatment technology, early in the development process. Thus, this approach enables the investigation of both important fields - the thermodynamic engine process and the aftertreatment system, together with their interaction in a single simulation environment. Regarding the aftertreatment system, the kinetic reaction behavior of state-of-the-art and advanced components, such as Diesel Oxidation Catalysts (DOC) or Selective Catalytic Reduction Soot Filters (SCRF), is being modelled. Furthermore, the authors present the use of the 1D engine and exhaust gas aftertreatment model on use cases of variable valve train (VVT) applications on passenger car (PC) diesel engines.
Journal Article

A Sectoral Approach to Modelling Wall Heat Transfer in Exhaust Ports and Manifolds for Turbocharged Gasoline Engines

2016-04-05
2016-01-0202
A new approach is presented to modelling wall heat transfer in the exhaust port and manifold within 1D gas exchange simulation to ensure a precise calculation of thermal exhaust enthalpy. One of the principal characteristics of this approach is the partition of the exhaust process in a blow-down and a push-out phase. In addition to the split in two phases, the exhaust system is divided into several sections to consider changes in heat transfer characteristics downstream the exhaust valves. Principally, the convective heat transfer is described by the characteristic numbers of Nusselt, Reynolds and Prandtl. However, the phase individual correlation coefficients are derived from 3D CFD investigations of the flow in the exhaust system combined with Low-Re turbulence modelling. Furthermore, heat losses on the valve and the seat ring surfaces are considered by an empirical model approach.
Technical Paper

Analysis of Cyclic Fluctuations of Charge Motion and Mixture Formation in a DISI Engine in Stratified Operation

2007-04-16
2007-01-1412
Engine processes are subject to cyclic fluctuations, which a have direct effect on the operating and emission behavior of the engine. The fluctuations in direct injection gasoline engines are induced and superimposed by the flow and the injection. In stratified operation they can cause serious operating problems, such as misfiring. The current state of knowledge on the formation and causes of cyclic fluctuations is rather limited, which can be attributed to the complex nature of flow instabilities. The current investigation analyzes the cyclic fluctuations of the in-cylinder charge motion and the mixture formation in a direct injection gasoline engine using laser-optical diagnostics and numerical 3D-calculation. Optical measurement techniques and pressure indication are used to measure flow, mixture formation, and combustion processes of the individual cycles.
Journal Article

Analysis of the Effect of Bio-Fuels on the Combustion in a Downsized DI SI Engine

2011-08-30
2011-01-1991
In this study the fuel influence of several bio-fuel candidates on homogeneous engine combustion systems with direct injection is investigated. The results reveal Ethanol and 2-Butanol as the two most knock-resistant fuels. Hence these two fuels enable the highest efficiency improvements versus RON95 fuel ranging from 3.6% - 12.7% for Ethanol as a result of a compression ratio increase of 5 units. Tetrahydro-2-methylfuran has a worse knock resistance and a decreased thermal efficiency due to the required reduction in compression ratio by 1.5 units. The enleanment capability is similar among all fuels thus they pose no improvements for homogeneous lean burn combustion systems despite a significant reduction in NOX emissions for the alcohol fuels as a consequence of lower combustion temperatures.
Technical Paper

Analysis of the Effects of Certain Alcohol and Furan-Based Biofuels on Controlled Auto Ignition

2012-04-16
2012-01-1135
For gasoline engines controlled autoignition provides the vision of enabling the fuel consumption benefit of stratified lean combustion systems without the drawback of additional NOx aftertreatment. In this study the potential of certain biofuels on this combustion system was assessed by single-cylinder engine investigations using the exhaust strategy "combustion chamber recirculation" (CCR). For the engine testing sweeps in the internal EGR rate with different injection strategies as well as load sweeps were performed. Of particular interest was to reveal fuel differences in the achievable maximal load as well as in the NOx emission behavior. Additionally, experiments with a shock tube and a rapid compression machine were conducted in order to determine the ignition delay times of the tested biofuels concerning controlled autoignition-relevant conditions.
Journal Article

Analysis of the Emission Conversion Performance of Gasoline Particulate Filters Over Lifetime

2019-09-09
2019-24-0156
Gasoline particulate filters (GPF) recently entered the market, and are already regarded a state-of-the-art solution for gasoline exhaust aftertreatment systems to enable EU6d-TEMP fulfilment and beyond. Especially for coated GPF applications, the prognosis of the emission conversion performance over lifetime poses an ambitious challenge, which significantly influences future catalyst diagnosis calibrations. The paper presents key-findings for the different GPF application variants. In the first part, experimental GPF ash loading results are presented. Ash accumulates as thin wall layers and short plugs, but does not penetrate into the wall. However, it suppresses deep bed filtration of soot, initially decreasing the soot-loaded backpressure. For the emission calibration, the non-linear backpressure development complicates the soot load monitoring, eventually leading to compromises between high safety against soot overloading and a low number of active regenerations.
Journal Article

Drivetrain Energy Distribution and Losses from Fuel to Wheel

2013-11-20
2013-01-9118
Depending on a vehicles drive cycle, an improvement of the overall drivetrain efficiency does not necessarily have to go along with an improvement of its mileage. In here the ratio of energy to overcome rolling resistance, aerodynamic drag, acceleration and energy wasted directly in wheel brakes is responsible for potentially differing trends. A detailed knowledge of energy flows, sources and sinks makes up a substantial step into optimizing any drive train. Most fuel energy leaves the drivetrain via exhaust pipes. Next to usable mechanical energy, a big amount is spent to heat up the system directly or to overcome drive train friction, which is converted into heat to warm up the system additionally. An in depth quantification of the most important energy flows for an upper middle-sized class gasoline powered drive train is given as results of warm-up cycle simulations.
Journal Article

Effects of LPG Fuel Formulations on Knock and Pre-Ignition Behavior of a DI SI Engine

2015-09-01
2015-01-1947
Due to their CO2 reduction potential and their high knock resistance gaseous fuels present a promising alternative for modern highly boosted spark ignition engines. Especially the direct injection of LPG reveals significant advantages. Previous studies have already shown the highest thermodynamic potential for the LPG direct injection concept and its advantages in comparison to external mixture formation systems. In the performed research study a comparison of different LPG fuels in direct injection mode shows that LPG fuels have better auto-ignition behavior than gasoline. A correlation between auto-ignition behavior and the calculated motor octane number could not be found. However, a significantly higher correlation of R2 = 0.88 - 0.99 for CR13 could be seen when using the methane number. One major challenge in order to implement the LPG direct injection concept is to ensure the liquid state of the fuel under all engine operating conditions.
Technical Paper

Experimental Investigation of a RCCI Combustion Concept with In-Cylinder Blending of Gasoline and Diesel in a Light Duty Engine

2015-09-06
2015-24-2452
Within this study a dual-fuel concept was experimentally investigated. The utilized fuels were conventional EN228 RON95E10 and EN590 Diesel B7 pump fuels. The engine was a single cylinder Diesel research engine for passenger car application. Except for the installation of the port fuel injection valve, the engine was not modified. The investigated engine load range covered low part load operation of IMEP = 4.3 bar up to IMEP = 14.8 bar at different engine speeds. Investigations with Diesel pilot injection showed that the dual-fuel approach can significantly reduce the soot/NOx-trade-off, but typically increases the HC- and CO-emissions. At high engine load and gasoline mass fraction, the premixed gasoline/air self-ignited before Diesel fuel was injected. Reactivity Controlled Compression Ignition (RCCI) was subsequently investigated in a medium load point at IMEP = 6.8 bar.
Journal Article

Future Specification of Automotive LPG Fuels for Modern Turbocharged DI SI Engines with Today’s High Pressure Fuel Pumps

2016-10-17
2016-01-2255
Liquefied Petroleum Gas direct injection (LPG DI) is believed to be the key enabler for the adaption of modern downsized gasoline engines to the usage of LPG, since LPG DI avoids the significant low end torque drop, which goes along with the application of conventional LPG port fuel injection systems to downsized gasoline DI engines, and provides higher combustion efficiencies. However, especially the high vapor pressure of C3 hydrocarbons can result in hot fuel handling issues as evaporation or even in reaching the supercritical state of LPG upstream or inside the high pressure pump (HPP). This is particularly critical under hot soak conditions. As a result of a rapid fuel density drop close to the supercritical point, the HPP is not able to keep the rail pressure constant and the engine stalls.
Technical Paper

Glow-plug Ignition of Ethanol Fuels under Diesel Engine Relevant Thermodynamic Conditions

2011-04-12
2011-01-1391
The requirement of reducing worldwide CO₂ emissions and engine pollutants are demanding an increased use of bio-fuels. Ethanol with its established production technology can contribute to this goal. However, due to its resistive auto-ignition behavior the use of ethanol-based fuels is limited to the spark-ignited gasoline combustion process. For application to the compression-ignited diesel combustion process advanced ignition systems are required. In general, ethanol offers a significant potential to improve the soot emission behavior of the diesel engine due to its oxygen content and its enhanced evaporation behavior. In this contribution the ignition behavior of ethanol and mixtures with high ethanol content is investigated in combination with advanced ignition systems with ceramic glow-plugs under diesel engine relevant thermodynamic conditions in a high pressure and temperature vessel.
Technical Paper

How Heat Losses to the Spark Plug Electrodes Affect Flame Kernel Development in an SI-Engine

1990-02-01
900021
A conventional spark plug and a spark plug with smaller electrodes were studied in M.I.T.'s transparent square piston engine. The purpose was to learn more about how the electrode geometry affects the heat losses to the electrodes and the electrical performance of the ignition system, and how this affects the flame development process in an engine. A schlieren system which provides two orthogonal views of the developing flame was used to define the initial flame growth process, for as many as 100 consecutive cycles. Voltage and current waveforms were recorded to characterize the spark discharge, and cylinder pressure data were used to characterize the engine performance. The spark plug with the smaller electrodes was shown to reduce the heat losses to the electrodes, and thereby extend the stable operating regime of the engine. At conditions close to the stable operating limit, cycle-by-cycle variations in heat losses cause significant cyclic variations in flame development.
Technical Paper

Influence of an Automatic Transmission with a Model Predictive Control and an On-Demand Clutch Actuator on Vehicle Fuel Consumption

2016-04-05
2016-01-1115
The demand for lower CO2 emissions requires not just the optimization of every single component but the complete system. For a transmission system, it is important to optimize the transmission hardware as we well as the interaction of powertrain components. For automatic transmission with wide ratio spreads, the main losses are caused by the actuation system, which can be reduced with use of ondemand actuation systems. In this paper, a new on-demand electromechanical actuation system with validation results on a clutch test bench is presented. The electro-mechanical actuator shows an increase in the efficiency of 4.1 % compared to the conventional hydraulic actuation in a simulated NEDC (New European Driving Cycle) cycle. This increase is based on the powerless end positions of the actuator (engaged and disengaged clutch). The thermal tension and wear are compensated with a disk spring. This allows a stable control over service life.
Technical Paper

Integrated Air Supply and Humidification Concepts for Fuel Cell Systems

2001-03-05
2001-01-0233
In this paper different air management system concepts including mechanical superchargers and turbochargers are analysed with regard to their suitability for fuel cell applications. Therefore a simulation model which takes the main mass, energy and heat flows in the fuel cell system including fuel evaporation, reformer, gas cleaning, humidification, burner and compressor/expander unit into account was setup. For a PEM system with methanol steam reformer the best system efficiencies at rated power can be achieved with a turbocharger in combination with a tailgas burner for operating pressures between 2.5 and 2.8 bar. For pure hydrogen systems the best system efficiency is obtained with an electric driven supercharger for a maximum pressure of 2 bar and an appropriate pressure strategy during part load operation in the complete operating range. The increase of system efficiency for pressurized stack operation is mainly attributed to advantages with regard to water management.
Technical Paper

Investigation of Oil Sources in the Combustion Chamber of Direct Injection Gasoline Engines

2018-09-10
2018-01-1811
To reduce hydrocarbon and particle emissions as well as irregular combustion phenomena, the identification and quantification of possible oil sources in the combustion chamber of the direct injection gasoline engine are of main interest. The aim of this research activity is to fundamentally investigate the formation of locally increased lubricating oil concentration in the combustion chamber. For this purpose, the oil sources are considered separately from each other and divided into two groups - piston/compression ring and lubricating film on the liner. The associated oil emissions and their influence on the engine combustion process are the core of the investigations.
Technical Paper

Modeling of Transport and Mixing Phenomena in Turbulent Flows in Closed Domains

2015-04-14
2015-01-0399
In this work, a transport and mixing model that calculates mixing in thermodynamic phase space was derived and validated. The mixing in thermodynamic multizone space is consistent to the one in the spatially resolved physical space. The model is developed using a turbulent channel flow as simplified domain. This physical domain of a direct numerical simulation (DNS) is divided into zones based on the quantitative value of transported scalars. Fluxes between the zones are introduced to describe mixing from the transport equation of the probability density function based on the mixing process in physical space. The mixing process of further scalars can then be carried out with these fluxes instead of solving additional transport equations. The relationship between the exchange flux in phase space and the concept of scalar dissipation are shown and validated by comparison to DNS results.
Technical Paper

New CNG Concepts for Passenger Cars: High Torque Engines with Superior Fuel Consumption

2003-06-23
2003-01-2264
Since the CO2 emissions of passenger car traffic and their greenhouse potential are in the public interest, natural gas (CNG) is discussed as an attractive alternative fuel. The engine concepts that have been applied to date are mainly based upon common gasoline engine technology. In addition, in mono-fuel applications, it is made use of an increased compression ratio -thanks to the RON (Research Octane Number) potential of CNG-, which allows for thermodynamic benefits. This paper presents advanced engine concepts that make further use of the potentials linked to CNG. Above all, the improved knock tolerance, which can be particularly utilized in turbocharged engine concepts. For bi-fuel (CNG/gasoline) power trains, the realization of variable compression ratio is of special interest. Moreover, lean burn technology is a perfect match for CNG engines. Fuel economy and emission level are evaluated basing on test bench and vehicle investigations.
Technical Paper

Optical Investigation on the Origin of Pre-Ignition in a Highly Boosted SI Engine Using Bio-Fuels

2013-04-08
2013-01-1636
Downsizing of highly-boosted spark-ignition (SI) engines is limited by pre-ignition, which may lead to extremely strong knocking and severe engine damage. Unfortunately, the concerning mechanisms are generally not yet fully understood, although several possible reasons have been suggested in previous research. The primary objective of the present paper is to investigate the influence of molecular bio-fuel structure on the locations of pre-ignition in a realistic, highly-charged SI engine at low speed by state-of-the-art optical measurements. The latter are conducted by using a high-sensitivity UV endoscope and an intensified high-speed camera. Two recently tested bio-fuels, namely tetrahydro-2-methylfuran (2-MTHF) and 2-methylfuran (2-MF), are investigated. Compared to conventional fuels, they have potential advantages in the well-to-tank balance. In addition, both neat ethanol and conventional gasoline are used as fuels.
Technical Paper

Pre-ignition Behavior of Gasoline Blends in a Single- Cylinder Engine with Varying Boost Pressure and Compression Ratio

2023-09-29
2023-32-0120
Pre-ignition in a boosted spark-ignition engine can be triggered by several mechanisms, including oil-fuel droplets, deposits, overheated engine components and gas-phase autoignition of the fuel-air mixture. A high pre-ignition resistance of the fuel used mitigates the risk of engine damage, since pre-ignition can evolve into super-knock. This paper presents the pre-ignition propensities of 11 RON 89-100+ gasoline fuel blends in a single-cylinder research engine. Albeit the addition of two high-octane components (methanol and reformate) to a toluene primary reference fuel improved the pre-ignition resistance, one high-RON fuel experienced runaway pre-ignition at relatively low boost pressure levels. A comparison of RON 96 blends showed that the fuel composition can affect pre-ignition resistance at constant RON.
Journal Article

Probing Species Formed by Pilot Injection During Re-Compression in a Controlled Auto-Ignition Engine by H2CO LIF and Chemiluminescence Imaging

2014-04-01
2014-01-1275
Pilot injection (PI) during the negative-valve-overlap (NVO) period is one method to improve control of combustion in gasoline controlled auto-ignition engines. This is generally attributed to both chemical and thermal effects. However, there are little experimental data on active species formed by the combusting PI and their effect on main combustion in real engines. Thus, it is the objective of the current study to apply and assess optical in-cylinder diagnostics for these species. Firstly, the occurrence and nature of combustion during the NVO period is investigated by spectrally-resolved multi-species flame luminescence measurements. OH*, CH*, HCO*, CO-continuum chemiluminescence, and soot luminosity are recorded. Secondly, spectrally-, spatially-, and cycle-resolved laser-induced fluorescence measurements of formaldehyde are conducted. It is attempted to find a cycle-resolved measure of the chemical effect of PI.
X