Refine Your Search

Topic

Search Results

Technical Paper

A Comparison of Conventional and Reactivity Controlled Compression Ignition (RCCI) Combustion Modes in a Small Single Cylinder Air-Cooled Diesel Engine

2017-10-08
2017-01-2365
Reactivity controlled compression ignition (RCCI) is one of the most promising low temperature combustion (LTC) strategies to achieve higher thermal efficiencies along with ultra low oxides of nitrogen (NOx) and particulate matter emissions. Small single cylinder diesel engines of air-cooled type are finding increasing applications in the agriculture pump-set and small utility power generation owing to their lower cost and fuel economy advantages. In the present work, a small single cylinder diesel engine is initially operated under conventional combustion mode at rated speed, varying load conditions to establish the base line reference data. Then, the engine is modified to operate under RCCI combustion mode with a newly designed cylinder head to accommodate a high pressure, fully flexible electronically controlled direct diesel fuel injection system, a low pressure gasoline port fuel injection system and an intake air pre heater.
Technical Paper

A Comparison of Different Low Temperature Combustion Strategies in a Small Single Cylinder Diesel Engine under Low Load Conditions

2017-10-08
2017-01-2363
Advanced low temperature combustion (LTC) modes are most promising to reduce green house gas emissions owing to fuel economy benefits apart from simultaneously reducing oxides of nitrogen (NOx) and particulate matter (PM) emissions from diesel engines. Various LTC strategies have been proposed so far and each of these LTC strategies have their own advantages and limitations interms of precise ignition control, achievable load range and higher unburned emissions. In the present work, a small single cylinder diesel engine is initially operated under conventional combustion mode at rated speed, varying load conditions to establish the base line reference data. Then, the engine is modified to operate under different LTC strategies including Homogenous Charge Compression Ignition (HCCI), Premixed Charge Compression Ignition (PCCI) and Reactivity Controlled Compression Ignition (RCCI).
Technical Paper

A Comparison of Different Warm-up Technologies on Transient Emission Characteristics of a Low-Compression Ratio Light-duty Diesel Engine

2022-03-29
2022-01-0482
It is well established that reducing the compression ratio (CR) of a diesel engine leads to a significant increase in hydrocarbon (HC) and carbon monoxide (CO) emissions, especially in cold and transient conditions. Hence, it is essential to find new strategies to reduce the HC and CO emissions of a low compression ratio (LCR) diesel engine in transient conditions. In the present work, a detailed evaluation of different warm-up technologies was conducted for their effects on transient emissions characteristics of a single-cylinder naturally aspirated LCR diesel engine. For this purpose, the engine was coupled to an instrumented transient engine dynamometer setup. A transient cycle of 160 seconds with starting, idling, speed ramp-up and load ramp-up was defined, and the engine was run in automatic mode by the dynamometer. The experiments were conducted by overnight soaking the engine at a specified temperature of 25 deg.C.
Technical Paper

A Composition Based Approach for Predicting Performance and Emission Characteristics of Biodiesel Fuelled Engine

2017-10-08
2017-01-2340
Biodiesel is a renewable, carbon neutral alternative fuel to diesel for compression ignition engine applications. Biodiesel could be produced from a large variety of feedstocks including vegetable oils, animal fats, algae, etc. and thus, vary significantly in their composition, fuel properties and thereby, engine characteristics. In the present work, the effects of biodiesel compositional variations on engine characteristics are captured using a multi-linear regression model incorporated with two new biodiesel composition based parameters, viz. straight chain saturation factor (SCSF) and modified degree of unsaturation (DUm). For this purpose, biodiesel produced from seven vegetable oils having significantly different compositions are tested in a single cylinder diesel engine at varying loads and injection timings. The regression model is formulated using 35 measured data points and is validated with 15 other data points which are not used for formulation.
Technical Paper

A Holistic Approach to Develop a Common Rail Single Cylinder Diesel Engine for Bharat Stage VI Emission Legislation

2020-04-14
2020-01-1357
The upcoming Bharat Stage VI (BS VI) emission legislation has put enormous pressure on the future of small diesel engines which are widely used in the Indian market. The present work investigates the emission reduction potential of a common rail direct injection single cylinder diesel engine by adopting a holistic approach of lowering the compression ratio, boosting the intake air and down-speeding the engine. Experimental investigations were conducted across the entire operating map of a mass-production, light-duty diesel engine to examine the benefits of the proposed approach and the results are quantified for the modified Indian drive cycle (MIDC). By reducing the compression ratio from 18:1 to 14:1, the oxides of nitrogen (NOx) and soot emissions are reduced by 40% and 75% respectively. However, a significant penalty in fuel economy, unburned hydrocarbon (HC) and carbon monoxide (CO) emissions are observed with the reduced compression ratio.
Technical Paper

Calibration and Parametric Investigations on Lean NOx Trap and Particulate Filter Models for a Light Duty Diesel Engine

2020-04-14
2020-01-0657
To comply with the stringent future emission mandates of light-duty diesel engines, it is essential to deploy a suitable combination of emission control devices like diesel oxidation catalyst (DOC), diesel particulate filter (DPF) and DeNOx converter (LNT or SCR). Arriving at optimum size and layout of these emission control devices for a particular engine through experiments is both time and cost-intensive. Thus, it becomes important to develop suitable well-tuned simulation models that can be helpful to optimize individual emission control devices as well as arrive at an optimal layout for achieving higher conversion efficiency at a minimal cost. Towards this objective, the present work intends to develop a one-dimensional Exhaust After Treatment Devices (EATD) model using a commercial code. The model parameters are fine-tuned based on experimental data. The EATD model is then validated with experiment data that are not used for tuning the model.
Technical Paper

Charge Dilution Strategy to Extend the Stable Combustion Regime of a Homogenous Charge Compression Ignited Engine Operated With Biodiesel

2023-09-29
2023-32-0132
The present research explores the application of biodiesel fuel in a stationary agricultural engine operated under the Homogenous charge compression ignition (HCCI) mode. To achieve HCCI combustion, a fuel vaporizer and a high-pressure port fuel injection system are employed to facilitate rapid evaporation of the biodiesel fuel. The low volatility of biodiesel is one of the significant shortcomings, which makes it inevitable to use a fuel vaporizer at 380oC. Consequently, the charge temperature is high enough to promote advanced auto-ignition. Further, the high reactivity of biodiesel favors early auto-ignition of the charge. Besides, biodiesel exhibits a faster burn rate due to its oxygenated nature. The combined effect of advanced auto-ignition and faster burn rate resulted in a steep rise in the in-cylinder pressures, leading to abnormal combustion above 20% load. Diluting the charge reduces reactivity and intake oxygen concentration, facilitating load extension.
Technical Paper

Comparison of Diesel-Water Emulsion and Water Vapor Induction Methods for Simultaneous Reduction in NOx and Smoke Emissions of a Diesel Engine

2020-08-14
2020-01-5076
Simultaneous reduction of oxides of nitrogen (NOx) and smoke emissions from diesel engines has always been a challenging task. In this research work, a relative comparison of diesel-water emulsion and water vapor induction methods has been made to examine NOx and smoke emissions reduction potential of a light-duty diesel engine. The water concentration was maintained at 6% of the total fuel in the emulsion and 6% of the total incoming air mass in the fumigation method. A stable diesel-water emulsion is prepared using commercially available surfactants, Span 80 and Tween 80 at 10% concentration. The stability of the emulsion was examined by visual inspection. The droplet size was quantified using dynamic light scattering technique and the emulsion was deemed stable for approximately 105 days on storage at room temperature. To generate water vapor in the intake manifold, 20 ultrasonic atomizers are utilized.
Technical Paper

Effect of Injection Parameters on the Premixed Charge Compression Ignition Combustion in a Small-Bore Light Duty Diesel Engine - A CFD Study

2021-09-21
2021-01-1174
Premixed charged compression ignition (PCCI) is a promising low temperature combustion strategy for achieving a simultaneous reduction of oxides of nitrogen (NOx) and soot emissions in diesel engines. However, early direct injection results in a significant penalty in fuel economy, high unburned hydrocarbon (HC), and carbon monoxide (CO) emissions, especially in small-bore diesel engines. In the present work, computational fluid dynamic (CFD) investigations are carried out in a small-bore diesel engine using a commercial CFD software, CONVERGE. The computational models are validated with experimental results at two different load conditions, 20% and 40% of rated load. The validated models are used to carry out parametric investigations on the effects of fuel injection parameters, namely the start of fuel injection timing, injection pressure, and spray cone angle on PCCI combustion.
Technical Paper

Effects of Compression Ratio and Water Vapor Induction on the Achievable Load Limits of a Light Duty Diesel Engine Operated in HCCI Mode

2019-04-02
2019-01-0962
Among the various Low Temperature Combustion (LTC) strategies, Homogeneous Charge Compression Ignition (HCCI) is most promising to achieve near zero oxides of nitrogen (NOx) and particulate matter emissions owing to higher degree of homogeneity and elimination of diffusion phase combustion. However, one of its major limitations include a very narrow operating load range owing to misfire at low loads and knocking at high loads. Implementing HCCI in small light duty air cooled diesel engines pose challenges to eliminate misfire and knocking problems owing to lower power output and air cooled operation, respectively. In the present work, experimental investigations are done in HCCI mode in one such light duty production diesel engine most widely used in agricultural water pumping applications. An external mixture preparation based diesel HCCI is implemented in the test engine by utilizing a high-pressure port fuel injection system, a fuel vaporizer and an air preheater.
Technical Paper

Evaluation of Low-Pressure EGR System on NOx Reduction Potential of a Supercharged LCR Single-Cylinder Diesel Engine

2022-03-29
2022-01-0447
Supercharging a single-cylinder diesel engine has proved to be a viable methodology to reduce engine-out emissions and increase full-load torque and power. The increased air availability of the supercharger (SC) system helps to inject more fuel quantity that can improve the engine's full-load brake mean effective pressure (BMEP) without elevating soot emissions. However, the increased inlet temperature of the boosted air and the availability of excess oxygen can pose significant challenges to contain oxides of nitrogen (NOx) emissions. Hence, it is important to investigate the potential NOx reduction options in supercharged diesel engines. In the present work, the potential of low-pressure exhaust gas recirculation (LP EGR) was evaluated in a single-cylinder supercharged diesel engine for its benefits in NOx emission reduction and impact on other criteria emissions and brake specific fuel consumption (BSFC).
Technical Paper

Evaporation Characteristics of Fuels for Low Temperature Combustion Engine Applications

2021-09-21
2021-01-1210
The research on reducing emissions from automotive engines through modifications in the combustion mode and the fuel type is gaining momentum because of the increasing contribution to global warming by the transportation sector. The combustion and emission formation in the advanced low temperature combustion (LTC) engine strategies are susceptible to fuel molecular composition and properties. Ignition timing in LTC strategies is primarily controlled by fuel composition and associated chemical kinetics. Thus, tailoring of fuel properties is required to address the limitations of LTC in terms of lack of control on ignition timing and narrow engine operating load range. Utilizing fuel blends and additives such as nanoparticles is a promising approach to achieving targeted fuel property. An improved understanding of fundamental processes, including fuel evaporation, is required due to its role in fuel-air mixing and emission formation in LTC.
Technical Paper

Experimental Investigation on Reactivity Controlled Compression Ignition with Oxygenated Alternative Fuel Blends to Reduce Unburned Hydrocarbon Emissions

2021-09-21
2021-01-1203
For controlling oxides of nitrogen (NOx) and particular matter (PM) emissions from diesel engines, various fuel and combustion mode modification strategies are investigated in the past. Low temperature combustion (LTC) is an alternative combustion strategy that reduces NOx and PM emissions through premixed lean combustion. Dual fuel reactivity-controlled compression ignition (RCCI) is a promising LTC strategy with better control over the start and end of combustion because of reactivity and equivalence ratio stratification. However, the unburned hydrocarbon (HC) and carbon monoxide (CO) emissions are significantly higher in RCCI, especially at part-load conditions. The present work intends to address this shortcoming by utilizing oxygenated alternative fuels. Considering the limited availability and higher cost, replacing conventional fuels completely with alternative fuels is not feasible.
Technical Paper

Experimental Investigations on the Effects of Multiple Injections in Reactivity-Controlled Compression Ignition in a Light-Duty Engine Operated with Gasoline/Diesel

2020-09-25
2020-01-5072
Reactivity-Controlled Compression Ignition (RCCI) is a promising low-temperature combustion (LTC) strategy to mitigate the oxides of nitrogen (NOx) and soot emissions. However, the unburned hydrocarbon (HC) and carbon monoxide (CO) emissions are much higher in RCCI compared to the conventional diesel combustion (CDC). In this present work, multiple injections of the direct-injected (DI) diesel fuel are explored as a potential method to reduce the high HC and CO emissions. Although significant research works have been done in the past on RCCI combustion in different engine types, investigations on small air-cooled diesel engines are very limited. In the present work, a production light-duty air-cooled diesel engine is modified to run in RCCI, with diesel as the high-reactivity fuel and gasoline as the low-reactivity fuel. Before modifications, the engine is run in CDC with production settings. In RCCI, experiments are initially performed with single-pulse DI.
Technical Paper

Experimental Investigations on the Effects of Water Injection in a Light-Duty Diesel Engine Operated with Biodiesel Fuel

2021-09-21
2021-01-1207
In-cylinder emission control methods for simultaneous reduction of oxides of nitrogen (NOx) and particulate matter (PM) are gaining attention due to stringent emission targets and the higher cost of after-treatment systems. In addition, there is a renewed interest in using carbon-neutral biodiesel due to global warming concerns with fossil diesel. The bi-directional NOx-PM trade-off is reduced to a unidirectional higher NOx emission problem with biodiesel. The effect of water injection with biodiesel with low water quantities is relatively unexplored and is attempted in this investigation to mitigate higher NOx emissions. The water concentrations are maintained at 3, 6, and 9% relative to fuel mass by varying the pulse width of a low-pressure port fuel injector. Considering the corrosive effects of water at higher concentrations, they are maintained below 10% in the present work.
Technical Paper

Experimental Investigations to Extend the Load Range of Premixed Charge Compression Ignited Light Duty Diesel Engine through Fuel Modifications

2019-04-02
2019-01-0953
Premixed Charge Compression Ignition (PCCI) is one of the most promising low temperature combustion (LTC) strategies to achieve near zero oxides of nitrogen (NOx) and particulate matter (PM) emissions along with higher thermal efficiency. One of the major problems in diesel PCCI is a narrow operating load range because of very early ignition and knocking combustion at higher loads owing to higher reactivity of diesel fuel. Further, low volatile diesel resist vaporization, resulting in fuel spray wall wetting and higher unburned emissions in PCCI. Thus, high reactivity and low volatility of diesel fuel make it not suitable for PCCI combustion. The present work attempts to address these limitations, by blending diesel with high volatile and low reactive fuels, viz. gasoline and butanol at 10% and 20% blend levels by volume.
Technical Paper

Experimental and Modeling Investigation of NO Formation Mechanism for Biodiesel and Its Blend with Methanol

2019-04-02
2019-01-0217
Biodiesel makes an attractive option to replace fossil diesel owing to its applicability in diesel engines without major modifications. An increase in NO emissions with biodiesel compared to diesel is a major concern for its wider use. Blending alcohols, such as methanol, with biodiesel is a potential remedy to mitigate NO formation, as suggested by experiments. However, computational investigations studying the effect of biodiesel-methanol blends on NO formation are scarce. A combined experimental and computational approach is adopted here to investigate the NO formation mechanism with neat biodiesel and biodiesel-methanol blend fueled light duty diesel engine. Firstly, a new compact kinetic model is utilized consisting of oxidation reactions for methyl butanoate and n-dodecane as a surrogate for biodiesel. A surrogate is defined to represent biodiesel based on a combined property and functional group based approach.
Technical Paper

Fourier Transform Infrared Spectroscopy Models to Predict Cetane Number of Different Biodiesels and Their Blends

2020-04-14
2020-01-0617
The ignition quality of a fuel is described by its cetane number. Experimental methods used to determine cetane number employ Co-operative fuel research (CFR) engine and Ignition quality tester (IQT) which are expensive, have less repeatability and require skilled operation, and hence least preferred. There are many prediction models reported, which involve number of double bonds and number of carbon atoms whose determination is not direct. Using models that relate biodiesel composition to its cetane number is limited by the range of esters involved. Hence, a model to predict cetane number of biodiesels that addresses the limitations of the existing models, without ignoring the influence of factors such as degree of unsaturation and number of carbon atoms, is needed. Fourier transform infrared spectroscopy (FTIR) could be one such method.
Technical Paper

Fuel Injection Strategies for Improving Performance and Reducing Emissions of a Low Compression Ratio Diesel Engine

2021-09-21
2021-01-1166
The present work investigates the effects of lowering the compression ratio (LCR) from 18:1 to 14:1 and optimizing the fuel injection parameters across the operating range of a mass production light-duty diesel engine. The results were quantified for a regulatory Indian drive cycle using a one-dimensional simulation tool. The results show that the LCR approach can simultaneously reduce the oxides of nitrogen (NOx) and soot emissions by 28% and 64%, respectively. However, the unburned hydrocarbon (HC) and carbon monoxide (CO) emissions increased significantly by 305% and 119%, respectively, with a 4.5% penalty in brake specific fuel consumption (BSFC). Hence, optimization of fuel injection parameters specific to LCR operation was attempted. It was evident that advancing the main injection timing and reducing the injection pressure at low-load operating points can significantly help to reduce BSFC, HC and CO emissions with a slight increase in the NOx emissions.
Technical Paper

Homogeneous Charge with Direct Multi-Pulse Injection - A Promising High Efficiency and Clean Combustion Strategy for Diesel Engines

2021-09-21
2021-01-1156
Extensive experimental investigations done over a decade in different engine types demonstrated the capability of achieving high efficiency along with low levels of oxides of nitrogen (NOx) and soot emissions with low temperature combustion (LTC) modes. However, the commercial application of LTC strategies requires several challenges to be addressed, including precise ignition timing control, reducing higher unburned hydrocarbon (UHC) and carbon monoxide (CO) emissions. The lower exhaust gas temperatures with LTC operation pose severe challenges for after-treatment control systems. Among the available LTC strategies, Reactivity Controlled Compression Ignition (RCCI) has emerged as the most promising strategy due to better ignition timing control with higher thermal efficiency. Nevertheless, the complexity of engine system hardware due to the dual fuel injection system and associated controls, high HC and CO emissions are the major limiting factors in RCCI.
X