Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

10 KWe Dual-Mode Space Nuclear Power System for Military and Scientific Applications

1992-08-03
929072
A 10 KWe dual-mode space power system concept has been identified which is based on INEL's Small Externally-fueled Heat Pipe Thermionic Reactor (SEHPTR) concept. This power system will enhance user capabilities by providing reliable electric power and by providing two propulsion systems; electric power for an arc-jet electric propulsion system and direct thrust by heating hydrogen propellant inside the reactor. The low thrust electric thrusters allow efficient station keeping and long-term maneuvering. The direct thrust capability can provide tens of pounds of thrust at a specific impulse of around 730 seconds for maneuvers that must be performed more rapidly. The direct thrust allows the nuclear power system to move a payload from Low Earth Orbit (LEO) to Geosynchronous Earth Orbit (GEO) in less than one month using approximately half the propellant of a cryogenic chemical stage.
Technical Paper

1D Modelling of Thermal Management of a Jet Trainer Aircraft

2023-03-07
2023-01-1005
Most of current jet aircraft circulate fuel on the airframe to match heat loads with available heat sink. The demands for thermal management in wide range of air vehicle systems are growing rapidly along with the increased mission power, vehicle survivability, flight speeds, and so on. With improved aircraft performance and growth of heat load created by Aircraft Mounted Accessory Drive (AMAD) system and hydraulic system, effectively removing the large amount of heat load on the aircraft is gaining crucial importance. Fuel is becoming heat transfer fluid of choice for aircraft thermal management since it offers improved heat transfer characteristics and offers fewer system penalties than air. In the scope of this paper, an AMESim model is built which includes airframe fuel and hydraulic systems with AMAD gearbox of a jet trainer aircraft. The integrated model will be evaluated for thermal performance.
Technical Paper

270-Vdc/Hybrid 115-Vac Electric Power Generating System Technology Demonstrator Evolution to a Dual-Channel, More Electric Aircraft Technology Development Testbed

1991-09-01
912183
Sundstrand has been investigating 270-Vdc/hybrid 115-Vac electrical power generating systems (EPGS) technology in preparation for meeting the electrical power generating system (EPGS) requirements for future aircraft (1). Systems such as the one being investigated are likely to be suitable for the More-Electric Aircraft (MEA) concepts presently under industry and military study. The present Sundstrand single-channel testbed is being further expanded to better understand the electrical system performance characteristics and power quality requirements of an MEA in which traditional mechanical subsystems are replaced by those of a “more-electric” nature. This paper presents the most recent Sundstrand 270-Vdc system transient performance data, and describes the modifications being made to the 270-Vdc/hybrid 115-Vac testbed.
Standard

32 Bit Binary CL (BCL) and 7 Bit ASCII CL (ACL) Exchange Input Format for Numerically Controlled Machines

2016-05-31
CURRENT
EIA494B
The scope of this Standard is the definition of the response of a numerically controlled machine to a valid sequence of records made up of 32 bit binary words or ASCII text strings. The Standard defines the structure of these records and of the 32 bit binary words or ASCII text strings which make up the records. This standard addresses the control of machines capable of performing 2, 3, 4, and 5 axis motion of an active tool (mill, laser, pen, etc.) relative to a part, and those capable of 2 and 4 axis tool motion relative to a rotating part (turning machines), including parallel tool slide sets capable of concurrent (merged) motion.
Technical Paper

777 Wing and Engine Ice Protection System

1997-07-14
972260
This paper describes the wing and engine ice protection system, used on all 777 aircraft. The 777 ice protection system is unique in two ways: it has an advanced control system which minimizes aircraft power consumption. In addition, the system was procured by the prime contractor, Boeing, as a fully integrated subsystem from a single supplier.
Technical Paper

8000 psi Hydraulic System Seals and Materials Test Program-A Progress Report

1985-10-01
851913
Flight control technology for 8000 psi has emerged almost simultaneously with new fire-resistant hydraulic fluids, such as MIL-H-83282 and CTFE. A proliferation of industry recommendations has resulted in a wide variety of mechanisms for solving associated actuator design problems, including tighter clearances, special seals, finishes, materials, and many others. As there are few common agreements on the issues, an extensive three-phase test program was undertaken to attempt to corroborate some of these approaches or suggest others that may be better or more cost effective.
Technical Paper

8000 psi Hydraulic System Seals and Materials Test Program-Final Report

1987-10-01
871895
An 8000 psi test program was conducted to resolve conflicts and issues surrounding the use of CTFE and MIL-H-83282 fluid with vented and unvented actuator rod seals. Each of the four possible combinations had unique problems and each responded to appropriate corrections including new backup rings designed to operate with standard clearances. It was concluded that all combinations were viable within certain limits. Advantages and disadvantages of each configuration were identified and specific recommendations made for both dynamic and static seals within the context of existing military specifications.
Standard

8000 psi Hydraulic Systems: Experience and Test Results

2004-03-18
HISTORICAL
AIR4002
Shortly after World War II, as aircraft became more sophisticated and power-assist, flight-control functions became a requirement, hydraulic system operating pressures rose from the 1000 psi level to the 3000 psi level found on most aircraft today. Since then, 4000 psi systems have been developed for the U.S. Air Force XB-70 and B-1 bombers and a number of European aircraft including the tornado multirole combat aircraft and the Concorde supersonic transport. The V-22 Osprey incorporates a 5000 psi hydraulic system. The power levels of military aircraft hydraulic systems have continued to rise. This is primarily due to higher aerodynamic loading, combined with the increased hydraulic functions and operations of each new aircraft. At the same time, aircraft structures and wings have been getting smaller and thinner as mission requirements expand. Thus, internal physical space available for plumbing and components continues to decrease.
Standard

8000 psi Hydraulic Systems: Experience and Test Results

2012-11-15
CURRENT
AIR4002A
Shortly after World War II, as aircraft became more sophisticated and power-assist, flight-control functions became a requirement, hydraulic system operating pressures rose from the 1000 psi level to the 3000 psi level found on most aircraft today. Since then, 4000 psi systems have been developed for the U.S. Air Force XB-70 and B-1 bombers and a number of European aircraft including the tornado multirole combat aircraft and the Concorde supersonic transport. The V-22 Osprey incorporates a 5000 psi hydraulic system. The power levels of military aircraft hydraulic systems have continued to rise. This is primarily due to higher aerodynamic loading, combined with the increased hydraulic functions and operations of each new aircraft. At the same time, aircraft structures and wings have been getting smaller and thinner as mission requirements expand. Thus, internal physical space available for plumbing and components continues to decrease.
Technical Paper

A Brief Study of Conditionally Enabled Phase Compensated Rate Limiters

2008-08-19
2008-01-2256
This paper describes how airplane control surface rate limiting can enable a ‘cliff-like’ onset of Pilot-Induced Oscillation, (P.I.O.) and how the danger can be erased by implementation of Conditionally Enabled Phase Compensated Rate Limiters, (PCRLs), in the design of the airplane's flight control system. The application is particularly important for large airplanes where control surface actuator sizing and the associated hydraulic system volumetric flow rate capability cannot be generously over-sized without large weight and cost penalties. It is shown that the PCRL can remain inactive during normal airplane operations where RMS control commands are relatively small thus avoiding adverse control surface response effects that have hindered earlier PCRL acceptance.
Technical Paper

A Chemical Containment Model for the General Purpose Work Station

1994-06-01
941286
Contamination control is a critical safety requirement imposed on experiments flying on board the Spacelab. The General Purpose Work Station, a Spacelab support facility used for life sciences space flight experiments, is designed to remove volatile compounds from its internal airpath and thereby minimize contamination of the Spacelab. This is accomplished through the use of a large, multi-stage filter known as the Trace Contaminant Control System. Many experiments planned for the Spacelab require the use of toxic, volatile fixatives in order to preserve specimens prior to post-flight analysis. The NASA-Ames Research Center SLS-2 payload, in particular, necessitated the use of several toxic, volatile compounds in order to accomplish the many inflight experiment objectives of this mission. A model was developed based on earlier theories and calculations which provides conservative predictions of the resultant concentrations of these compounds given various spill scenarios.
Technical Paper

A Clutch for V/STOL

1977-02-01
770989
This paper describes the requirements, design, and early testing of a flight weight V/STOL clutch. A clutch is required between the combiner box and the forward or nose fan for some versions of V/STOL aircraft. This clutch has been designed to transmit 11,000 HP at fan drive speeds, and be capable of minimum engagement times and rapid cycling. This paper will cover the mechanical arrangement and control system of this clutch.
Journal Article

A Comparison between One- and Two-Loop ATCS Architectures Proposed for CEV

2009-07-12
2009-01-2458
In an effort to help future crewed spacecraft thermal control analysts understand the characteristics of one-and two-loop Active Thermal Control Systems (ATCS), a comparison was made between the one- and two-loop ATCS architectures officially proposed for the Crew Exploration Vehicle (CEV) in Design Analysis Cycle 1 (DAC1) and DAC2, respectively. This report provides a description of each design, along with mass and power estimates derived from their respective Master Equipment List (MEL) and Power Equipment List (PEL). Since some of the components were sized independent of loop architecture (ex. coldplates and heat exchangers), the mass and power for these components were based on the MEL and PEL of the most mature design (i.e. two-loop architecture). The mass and power of the two architectures are then compared and the ability of each design to meet CEV requirements is discussed.
Journal Article

A Comparison of the Apollo and Early Orion Environmental Control, Life Support and Active Thermal Control System's Driving Requirements and System Mass

2008-06-29
2008-01-2081
The Orion Crew and Service Modules are often compared to the Apollo Command and Service Modules due to their similarity in basic mission objective: both were dedicated to getting a crew to lunar orbit and safely returning them to Earth. Both spacecraft rely on the environmental control, life support and active thermal control systems (ECLS/ATCS) for the basic functions of providing and maintaining a breathable atmosphere, supplying adequate amount of potable water and maintaining the crew and avionics equipment within certified thermal limits. This assessment will evaluate the driving requirements for both programs and highlight similarities and differences. Further, a short comparison of the two system architectures will be examined including a side by side assessment of some selected system's hardware mass.
Technical Paper

A Computer Aided Engineering Tool for ECLS Systems

1987-07-01
871423
This paper presents an overview of the Computer Aided Systems Engineering and Analysis (CASE/A)-ECLSS series which is designed as a generalised ECLSS design and analysis package. This system was developed under NASA MSEC contract NAS8-36407 to meet the Systems Analysis requirements of the Space Station ECLSS. The Space Station represents an order of magnitude increase in complexity over current Spacecraft technologies and will seriously tax current analysis techniques. This program is capable of simulating atmospheric revitalization systems, water recovery and management systems, and single phase active thermal control systems. The program evolved from both the G189A and the SINDA programs and shares the G189A architectural concepts. The designer/ analysis interface is graphics based and allows the designer to build a model by constructing a schematic of the system under consideration.
Technical Paper

A Concurrent Design/Analysis Tool for Aircraft Hydraulic Systems

1990-09-01
902004
This paper presents the results of an investigation to improve design/analysis techniques for aircraft hydraulic systems. A design/analysis tool was developed by integrating control-surface commands and loads obtained from Aircraft Dynamic Simulator Software (ADSS) with an enhanced version of the HYdraulic TRansient ANalysis (HYTRAN) program. Control-surface commands and loads from an ADSS simulation of a selected maneuver were used as dynamic input to the HYTRAN program so that the hydraulic system response could be predicted throughout the maneuver. Predicted hydraulic system pressures and control-surface positions from the HYTRAN simulation of the maneuver were compared to flight-test data and were found to be in excellent agreement. The successful coalescence of the two independent software programs gives engineers a concurrent design/analysis tool that can be used to optimize hydraulic system designs during the very early stages of design.
Technical Paper

A Control System for Managing and Replenishing Nutrient Solution Based on Electrical Conductivity

1998-07-13
981807
An automated nutrient replenishment system has been developed in order to provide a constant electrical conductivity (EC) value for the nutrient solution over the period of plant growth. A single nutrient film technique (NFT) system developed by the Tuskegee University NASA Center was equipped with the EC control system for growth trials with sweetpotatoes. The system is completely controlled and monitored by a PC through the use of LabView instrumentation and data acquisition software. A submersible EC probe driven by an EC controller measures the EC of the nutrient solution reservoir. EC values are passed from the controller to the PC through analog outputs. If the EC is outside a given range, the PC sends a signal to one of two solenoid valves that allow concentrated stock solution or deionized water to enter the reservoir to either raise or lower the EC respectively. For this application the set point is 1200μS cm-1, with a dead band from 1180 to 1220μS cm-1.
Technical Paper

A Cooling System for the EAPU Shuttle Upgrade

2001-07-09
2001-01-2152
The Shuttle orbiter currently uses hydrazine-powered APU’s for powering its hydraulic system pumps. To enhance vehicle safety and reliability, NASA is pursuing an APU upgrade where the hydrazine-powered turbine is replaced by an electric motor pump and battery power supply. This EAPU (Electric APU) upgrade presents several thermal control challenges, most notably the new requirement for moderate temperature control of high-power electronics at 132 °F (55.6 °C). This paper describes how the existing Water Spray Boiler (WSB), which currently cools the hydraulic fluid and APU lubrication oil, is being modified to provide EAPU thermal management.
Standard

A DYNAMIC TEST METHOD FOR DETERMINING THE DEGREE OF CLEANLINESS OF THE DOWNSTREAM SIDE OF FILTER ELEMENTS

1996-05-01
HISTORICAL
ARP599
This test method describes a procedure for determining the insoluble contamination level of the downstream side of filter elements. Results of this procedure are intended to be used only for evaluation of the effectiveness of various cleaning treatments, or cleanliness of element as received from manufacturers. The data obtained by this procedure do not necessarily indicate, qualitatively or quantitatively, the contamination which may be released by a filter element into a fluid during service use. Because of the wide variety of conditions which may exist in service applications, it is recommended that the user design and conduct his own particular service performance test. (See paragraph 10.1).
Technical Paper

A Decade of Progress in Turbomachinery Design and Development

1985-08-01
851989
The considerable progress made by turbo-machinery design in the last decade has been paced by the rigorous demands of the customers and the competitive pressures of the market place. The requirements have been for significant improvements in product operability, performance, cost, reliability, durability, maintainability and weight. Four inter-related fronts have been responsible for much of this progress: ADVANCEMENTS IN MECHANICAL DESIGN CONFIGURATIONS - such as integral blades and disks, more efficient hot-part cooling, sophisticated clearance control systems and welded rotors -have afforded improvements in virtually all measurements of merit. ADVANCED MATERIALS AND PROCESSING yielding improved temperature, strength and life properties - have permitted designs with higher cycle pressures, temperatures and tip speeds.
X