Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

3 Inch Ice Shapes, AB Initio

2023-06-15
2023-01-1434
The term “3 inch ice shapes” has assumed numerous definitions throughout the years. At times it has been used to generally characterize large glaze ice accretions on the major aerodynamic surfaces (wing, horizontal stabilizer, vertical stabilizer) for evaluating aerodynamic performance and handling qualities after a prolonged icing encounter. It has also been used as a more direct criterion while determining or enforcing sectional ice shape characteristics such as the maximum pinnacle height. It is the authors’ observation that over the years, the interpretation and application of this term has evolved and is now broadly misunderstood. Compounding the situation is, at present, a seemingly contradictory set of guidance among (and even within) the various international regulatory agencies resulting in an ambiguous set of expectations for design and certification specialists.
Standard

400 Hz CONNECTION AIRCRAFT ELECTRICAL MAINTENANCE PROCEDURES

1994-12-01
HISTORICAL
AIR4365
This SAE Aerospace Information Report (AIR) describes field-level procedures to determine if 400 Hz electrical connections for external power may have been subjected to excessive wear, which may result in inadequate disengagement forces.
Standard

400 Hz Connection Aircraft Electrical Maintenance Procedures

2008-03-28
HISTORICAL
AIR4365A
This SAE Aerospace Information Report (AIR) describes field-level procedures to determine if 400 Hz electrical connections for external power may have been subjected to excessive wear, which may result in inadequate disengagement forces.
Technical Paper

6 degrees of freedom simulation of an unguided sounding rocket using Matlab/Simulink

2024-01-08
2023-36-0095
Unguided sounding rockets, also known as sub-orbital rockets, are vehicles that carry scientific experiments and/or sensors to collect data during their trajectory. These rockets lack active control but are capable of traversing the Earth’s atmosphere. It is crucial to thoroughly analyze the flight parameters during the preliminary design phase. The Open Rocket flight simulation software, developed by Sampo Niskanen, is a widely used open-source project. However, it has some simplifications in comparison to its documentation. It does not specify the calculations of critical parameters required for the rocket’s stability during its flight. Additionally, it does not calculate data related to dynamic stability, which encompasses the system’s ability to make disturbances corrections during the rocket’s trajectory. Consequently, this study presents a flight simulation of a rocket with 6 degrees of freedom using Matlab/Simulink.
Technical Paper

A Benchmark Case for Aerodynamics and Aeroacoustics of a Low Pressure Axial Fan

2016-06-15
2016-01-1249
A low pressure axial fan for benchmarking numerical methods in the field of aerodynamics and aeroacoustics is presented. The generic fan for this benchmark is a typical fan to be used in commercial applications. The design procedure was according to the blade element theory for low solidity fans. A wide range of experimental data is available, including aerodynamic performance of the fan (fan characteristic curve), fluid mechanical quantities on the pressure and suction side from laser Doppler anemometer (LDA) measurements, wall pressure fluctuations in the gap region and sound characteristics on the suction side from sound power and microphone array measurements. The experimental setups are described in detail, as to ease reproducibility of measurement positions. This offers the opportunity of validating aerodynamic and aeroacoustic quantities, obtained from different numerical tools and procedures.
Technical Paper

A Benchmark Case for Aerodynamics and Aeroacoustics of a Low Pressure Axial Fan

2016-06-15
2016-01-1805
A low pressure axial fan for benchmarking numerical methods in the field of aerodynamics and aeroacoustics is presented. The generic fan for this benchmark is a typical fan to be used in commercial applications. The design procedure was according to the blade element theory for low solidity fans. A wide range of experimental data is available, including aerodynamic performance of the fan (fan characteristic curve), fluid mechanical quantities on the pressure and suction side from laser Doppler anemometer (LDA) measurements, wall pressure fluctuations in the gap region and sound characteristics on the suction side from sound power and microphone array measurements. The experimental setups are described in detail, as to ease reproducibility of measurement positions. This offers the opportunity of validating aerodynamic and aeroacoustic quantities, obtained from different numerical tools and procedures.
Technical Paper

A Brief Survey of Wing Tip Devices for Drag Reduction

1993-09-01
932574
A short survey of wing tip geometries for drag reduction is presented. These devices have been divided into two broad categories of passive and active. The first category is made of fixed geometries, while the second group is made of those employing moving parts. The former group is further divided into planar and nonplanar designs. In every case, a brief explanation of the underlying logic is given. Altogether, more than fifteen completely different designs and over seventy references have been cited. Some of these designs, such as winglets, have been explored for many years and have proven to be very effective at reducing the induced drag at higher values of lift coefficient. Some others, such as wing tip turbines, have just begun to attract attention. Wing tip fuel tanks, not being solely employed for drag reduction, have not been included in this paper.
Technical Paper

A CFD Investigation on the Nozzle of Orifices Distributing in Different Space Layers

2008-04-14
2008-01-0948
A series calculation methodology from the injector nozzle internal flow to the fuel spray was applied to investigate the internal flow and spray of a nozzle whose orifices distributed in different space layers. The nozzle internal flow calculation using an Eulerian three-fluid model and a cavitation model was performed. The needle valve movement during the injection period was taken into account in this calculation. The transient data of spatial distributions of velocity, turbulent kinetic energy, dissipation rate, void fraction rate, etc. at the nozzle exit were extracted. These output data were transferred to the spray calculation, in which a primary break-up model was applied to the Discrete Droplet Model (DDM). The calculation results were compared with the results of the measurement data of spray. Predicted spray morphology and penetration showed good agreement with the experiental data.
Journal Article

A CFD-Based Procedure for Evaluation of Ventilation of a Suddenly-Opened Closeout Space and Its Application to the International Space Station

2008-06-29
2008-01-2058
The aim of the study is to understand risks associated with a crew member accessing behind the closeout panel or space. Since there is a possibility that a particular closeout space is filled with a harmful gas mixture that is different from the cabin atmosphere, the time needed to ventilate this space should be evaluated. The three-dimensional Computational Fluid Dynamics (CFD) model developed for prediction of time-dependent turbulent flow and concentration fields inside and near a suddenly-opened box is described in the paper. Several cases with different positions of the closeout space, initially filled with pure oxygen, are analyzed under the U.S. Laboratory (USL) ventilation conditions. A simplified flow model, where a suddenly-opened box is ventilated by uniform external throughflow, is considered as well.
Technical Paper

A CFD-Based, Application-Oriented, Integrated Simulation Environment for Rapid Prediction of Aerodynamic Sensitivities of 3-D Configurations

1997-10-01
975606
Within the frame of a series of initiatives aimed at improving effectiveness of its aircraft design and analysis capabilities, the Military Division of Daimler-Benz Aerospace (Dasa) is developing MIDAS, a multidisciplinary integration framework for a suite of numerical codes suitable to quickly and still accurately assess aircraft performance. As MIDAS specifically targets support of configurational studies in a Conceptual and Preliminary Design environment, peculiar requirements such as scope, range of applicability, and robustness of the system components, reliability of results, care-free operability, and fast response times have to be properly addressed.
Technical Paper

A Calculation of Penetration of the Jet Issuing Normally into a Cross Flow Across a Wall Boundary Layer

1991-09-01
912029
An Increase in jet penetration due to the wall boundary layer is determined in the flow field including an aerodynamic interference between the wall boundary layer and the jet. The aerodynamic effect of the wall boundary layer is replaced by that of a secondary vortex filament resulting from vorticity in the wall boundary layer. A differential equation governing the increase in jet penetration is derived using the circulation around the secondary vortex filaments, its induced velocity and the empirical decay law of the jet axial velocity along the jet centerline. The circulation around the secondary vortex filament is estimated according to Hawthorne's theory (1)* and expressed in terms of aerodynamic characteristics of the wall boundary layer. A numerical example of the present analysis shows a fairly good agreement with the experiment. This indicates that the used vortex flow model simulates the real flow conditions well.
Journal Article

A Carbon Intensity Analysis of Hydrogen Fuel Cell Pathways

2021-03-02
2021-01-0047
A hydrogen economy is an increasingly popular solution to lower global carbon dioxide emissions. Previous research has been focused on the economic conditions necessary for hydrogen to be cost competitive, which tends to neglect the effectiveness of greenhouse gas mitigation for the very solutions proposed. The holistic carbon footprint assessment of hydrogen production, distribution, and utilization methods, otherwise known as “well-to-wheels” carbon intensity, is critical to ensure the new hydrogen strategies proposed are effective in reducing global carbon emissions. When looking at these total carbon intensities, however, there is no single clear consensus regarding the pathway forward. When comparing the two fundamental technologies of steam methane reforming and electrolysis, there are different scenarios where either technology has a “greener” outcome.
Technical Paper

A Compact High Intensity Cooler (CHIC)

1983-07-11
831127
A unique heat exchanger has been developed with potential applications for cooling high power density electronics and perhaps high energy laser mirrors. The device was designed to absorb heat fluxes of approximately 50 w/cm2 (158,000 Btu/hr.ft2) with a low thermal resistance, a high surface temperature uniformity and very low hydraulic pumping power. A stack of thin copper orifice plates and spacers was bonded together and arranged to provide liquid jet impingement heat transfer on successive plates. This configuration resulted in effective heat transfer coefficients, based on the prime surface, of about 85,000 w/m2 °C (15,000 Btu/hr.ft2 °F) and 1.8 watts (.002 HP) hydraulic power with liquid Freon 11 as coolant.
Technical Paper

A Comparative Analysis of the Boeing 727-100 Using Three Advanced Design Methodologies

1996-10-01
965518
A comparative analysis has been performed on the Boeing 727-100 using three conceptual design codes. These programs were: The Aircraft Synthesis Program, ACSYNT, Advanced Aircraft Analysis, AAA, and RDS-Student. The objective of this study was to investigate differences in the conceptual design methodologies of these three programs. All three codes showed reasonable prediction of drag in the subsonic flow regime. However all three programs had difficulty predicting transonic drag rise characteristics. The principal cause was the inability to accurately predict the critical drag rise Mach number. Difficulties in estimating the shape of the drag rise curve, relative to the critical Mach number, also contributed to the errors in drag prediction. AAA and RDS-Student gave reasonable predictions of maximum lift coefficient. ACSYNT could not model the triple-slotted flap system on the 727-100. The three codes showed a consistent trend towards under-prediction of empty weight.
Technical Paper

A Comparative Study of Four Algebraic Transition Models

1994-04-01
941142
The flow through most turbomachinery blade rows is characterized by unsteady, viscous, transitional flow. The accurate prediction of the onset of transition from laminar to turbulent flow is essential for calculating heat transfer and performance quantities. The purpose of this investigation is to evaluate the accuracy of four different algebraic transition models which have been combined with an algebraic turbulence model. Numerical experiments have been performed for flow through a turbine rotor cascade with heat transfer, and a cascade of compressor blades. In addition, a study was performed to determine the effects of the computational grid density on the transition location.
Technical Paper

A Comparative Study of RANS and Machine Learning Techniques for Aerodynamic Analysis of Airfoils

2024-06-01
2024-26-0460
It is important to accurately predict the aerodynamic properties for designing applications which involves fluid flows, particularly in the aerospace industry. Traditionally, this is done through complex numerical simulations, which are computationally expensive, resource-intensive and time-consuming, making them less than ideal for iterative design processes and rapid prototyping. Machine learning, powered by vast datasets and advanced algorithms, offers an innovative approach to predict airfoil characteristics with remarkable accuracy, speed, and cost-effectiveness. Machine learning techniques have been applied to fluid dynamics and have shown promising results. In this study, machine learning model called the back-propagation neural network (BPNN) is used to predict key aerodynamic coefficients of lift and drag for airfoils.
Technical Paper

A Computer Model of a Pulsejet Engine

1982-02-01
820953
This paper deals with the performance prediction of one member of a family of thrust producing intermittent combustion engines, namely the pulsejet. The first part is concerned with formulating basic concepts of how pulsejets work. It describes the different methods of providing intake valving action and derives theory to demonstrate the operation of the aerodynamic tuned valve in particular. The second part is concerned with devising a computer program to simulate and predict the performance of valveless pulsejets. The program is based on the method of characteristics for calculating unsteady gas flow. Theories and techniques are given to handle the major problems associated with this application. These problems include the large range of discontinuous temperature and entropy, flow through an area discontinuity and the calculation of mean thrust.
Journal Article

A De-Spin and Wings-Leveling Controller for a 40 mm Hybrid Projectile

2013-09-17
2013-01-2262
A Hybrid Projectile (HP) is a round that transforms into a UAV after being launched. Some HP's are fired from a rifled barrel and must be de-spun and wings-level for lifting surfaces to be deployed. Control surfaces and controllers for de-spinning and wings-leveling were required for initial design of an HP 40 mm. Wings, used as lifting surfaces after transformation, need to be very close to level with the ground when deployed. First, the tail surface area needed to de-spin a 40 mm HP was examined analytically and simulated. Next, a controller was developed to maintain a steady de-spin rate and to roll-level the projectile in preparation of wing deployment. The controller was split into two pieces, one to control de-spin, and the other for roll-leveling the projectile. An adaptable transition point for switching controllers was identified analytically and then adjusted by using simulations.
Technical Paper

A Design Approach to Integrated Flight and Propulsion Control

1983-10-03
831482
A decentralized, multivariable controls methodology is being developed for the functional integration of a fighter's aerodynamic controls with those of its propulsion system (inlet, engine, and thrust vectoring/reversing nozzle). Integrated controls account for, and take advantage of the significant cross-coupling between these system elements. A high-fidelity, six-degrees-of-freedom (6 DOF) aircraft simulation has been developed, incorporating advanced tactical fighter features such as variable cycle engines, variable geometry inlets, 2D-CD TV/TR nozzles, canards and a propulsive lift concept. A comprehensive evaluation test plan, including a piloted simulation, has been developed to validate this integrated-controls design methodology. Preliminary results show significant benefits of integrated control in terms of enhanced aircraft maneuverability, precise flight path control, reduced pilot workload, and fault tolerant system design.
Technical Paper

A Fast Aerodynamic Procedure for a Complete Aircraft Design Using the Know Airfoil Characteristics

2006-11-21
2006-01-2818
The performance and flight characteristics of an aircraft are markedly affected by the aerodynamic design, which can be done making use of various tools such as wind tunnel tests and computer simulations. Despite the fact that wind tunnel testing permits great trustworthiness of results, they are still slow and costly procedures. On the other hand, computational methods allow for faster and lower budget analysis. For the conception and the initial phase of an aircraft design, where it is necessary to evaluate a great variety of wings and lifting surfaces configurations, it is desirable to have a method able to determine the main aerodynamic characteristics, such as drag and lift, quickly. In more advanced phases of the design the interest is in obtaining results which shows a more detailed flow around the aircraft.
X