Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

1970 Passenger Car High Altitude Emission Baseline

1979-02-01
790959
The 1977 Clean Air Act Amendments allow the U.S. Environmental Protection Agency to set high altitude emission standards for 1981-83, but specify that any such standards may not be more stringent than comparable sea level standards -- relative to 1970 emission levels. Since available high altitude emission data from 1970 models were incomplete and controversial, the Motor Vehicle Manufacturers Association contracted with Automotive Testing Laboratories, Inc. to test a fleet of 25 1970 cars. Results of the test program showed average increases in emissions at Denver's altitude, compared to sea level, to be about 30% for evaporative HC, 57 to 60% for exhaust HC, 215 to 247% for CO and -46 to -47% for NOx. Corresponding HC and CO exhaust emission baselines would be 6.4 to 6.6 and 108 to 118 g/mi respectively.
Journal Article

2-Stroke High Speed Diesel Engines for Light Aircraft

2011-09-11
2011-24-0089
The paper describes a numerical study, supported by experiments, on light aircraft 2-Stroke Direct Injected Diesel engines, typically rated up to 110 kW (corresponding to about 150 imperial HP). The engines must be as light as possible and they are to be directly coupled to the propeller, without reduction drive. The ensuing main design constraints are: i) in-cylinder peak pressure as low as possible (typically, no more than 120 bar); ii) maximum rotational speed limited to 2600 rpm. As far as exhaust emissions are concerned, piston aircraft engines remain unregulated but lack of visible smoke is a customer requirement, so that a value of 1 is assumed as maximum Smoke number. For the reasons clarified in the paper, only three cylinder in line engines are investigated. Reference is made to two types of scavenging and combustion systems, designed by the authors with the assistance of state-of-the-art CFD tools and described in detail in a parallel paper.
Article

2050 aircraft engine designs go radical, part 2

2018-10-24
In part two of a two-part series, Richard Gardner discusses various aerospace propulsion innovations and continued work by aerospace engineers and scientists to advance aircraft engine technologies to increase efficiency and lower emissions.
Technical Paper

21st Century Lunar Exploration: Advanced Radiation Exposure Assessment

2006-07-17
2006-01-2106
On January 14, 2004 President George W Bush outlined a new vision for NASA that has humans venturing back to the moon by 2020. With this ambitious goal, new tools and models have been developed to help define and predict the amount of space radiation astronauts will be exposed to during transit and habitation on the moon. A representative scenario is used that includes a trajectory from LEO to a Lunar Base, and simplified CAD models for the transit and habitat structures. For this study galactic cosmic rays, solar proton events, and trapped electron and proton environments are simulated using new dynamic environment models to generate energetic electron, and light and heavy ion fluences. Detailed calculations are presented to assess the human exposure for transit segments and surface stays.
Technical Paper

3-D Ultrasound for Medical Imaging in Space

1997-07-01
972286
Ultrasound is attractive for medical imaging in space because scanners can be small, lightweight, low power, and have minimal electromagnetic emissions. In addition, unlike conventional 2-D ultrasound. 3-D ultrasound allows an operator with no diagnostic skills to collect high-quality scans that can be interpreted by a remote expert. This allows 3-D ultrasound to be used effectively in remote locations. These capabilities are illustrated by the MUSTPAC-1, a portable 3-D ultrasound telemedicine system recently developed for the U.S. military. Design, implementation, and field experiences with the MUSTPAC-1 are discussed, and extensions for use in space are proposed.
Standard

32 Bit Binary CL (BCL) and 7 Bit ASCII CL (ACL) Exchange Input Format for Numerically Controlled Machines

2016-05-31
CURRENT
EIA494B
The scope of this Standard is the definition of the response of a numerically controlled machine to a valid sequence of records made up of 32 bit binary words or ASCII text strings. The Standard defines the structure of these records and of the 32 bit binary words or ASCII text strings which make up the records. This standard addresses the control of machines capable of performing 2, 3, 4, and 5 axis motion of an active tool (mill, laser, pen, etc.) relative to a part, and those capable of 2 and 4 axis tool motion relative to a rotating part (turning machines), including parallel tool slide sets capable of concurrent (merged) motion.
Technical Paper

3D Image Metrology for Lean Manufacturing

1999-06-05
1999-01-2290
The need to improve quality while reducing cost in aerospace manufacturing is requiring new manufacturing methods and processes. Advanced technologies, such as 3D Image Metrology, offer great potential to lean manufacturing, if properly integrated into the production process. Over the last years 3D Image Metrology has developed a level of performance, which make it ideally suited for this purpose. These capabilities include the automatic in-process inspection of tools and parts before machining, machine control for highly accurate positioning during the machining operation, and in-process inspection during machining. This offers jig-less assembly, lower inventory, faster part throughput, and many more advantages.
Standard

3GCN - SEAT DISTRIBUTION SYSTEM

2014-08-15
CURRENT
ARINC809-3
This specification defines general architectural philosophy and specific design guidance for the proper installation and interface of various cabin equipment within the seats. Consistency with this specification allows each component installed on the seat to operate in concert when integrated with other relevant cabin type equipment. Standard electrical and mechanical interfaces of the In- Flight Entertainment System (IFES) equipment for the 3rd Generation Cabin Network (3GCN) associated with the seat are defined. This equipment consists of the headphone jacks (HPJ), passenger control unit (PCU)/multi function handset (including the cord), seat video display (SVD), remote data outlet (RDO), integrated seat box (ISB) which includes the seat power box (SPB)/seat data box (SDB), remote power outlet (RPO), and in-seat cables. Appropriate definitions are also provided for other electrical devices associated with the seat control/position mechanism.
Technical Paper

4000–5000 R Temperature Surveys in Mach 0.2–0.6 Hydrocarbon Hot Gas Streams

1963-01-01
630367
This paper discusses five different methods for measuring the gas stream temperature from a burner using a hydrocarbon fuel, air, and oxygen. Tests were made with a single shielded BeO probe, a bare wire iridium -- 60% rhodium/iridium couple, a tantalum triple shielded platinum -- 10% rhodium/platinum thermocouple, the sodium line reversed technique, and a watercooled total enthalpy probe. The most serviceable system proved to be the bare wire iridium -- 60% rhodium/iridium couple, particularly for carrying out stream surveys where relative, rather than true temperatures, are of primary concern. More study is needed to establish a system for determining the true stream temperature.
Journal Article

500 Hours Endurance Test on Biodiesel Running a Euro IV Engine

2010-10-25
2010-01-2270
A 500 hours endurance test was performed with a heavy-duty engine (Euro IV); MAN type D 0836 LFL 51 equipped with a PM-Kat®. As fuel 100% biodiesel was used that met the European specification EN 14214. The 500 hours endurance test included both the European stationary and transient cycle (ESC and ETC) as well as longer stationary phases. During the test, regulated emissions (carbon monoxide, nitrogen oxides, hydrocarbons and particulate matter), the particle number distribution and the aldehydes emission were continuously measured. For comparison, tests with fossil diesel fuel were performed before and after the endurance test. During the endurance test, the engine was failure-free for 500 hours with the biogenic fuel. There were almost no differences in specific fuel consumption during the test, but the average exhaust gas temperature increased by about 15°C over the time. Emissions changed only slightly during the test.
Standard

649 Handbook

2020-02-13
WIP
GEIAHB649B
This handbook is intended to assist the user to understand the ANSI/EIA-649B standard principles and functions for Configuration Management (CM) and how to plan and implement effective CM. It provides CM implementation guidance for all users (CM professionals and practitioners within the commercial and industry communities, DoD, military service commands, and government activities (e.g., National Aeronautics and Space Administration (NASA), North Atlantic Treaty Organization (NATO)) with a variety of techniques and examples. Information about interfacing with other management systems and processes are included to ensure the principles and functions are applied in each phase of the life cycle for all product categories.
Technical Paper

747 ENGINE INSTALLATION FEATURES

1968-02-01
680335
New approaches to problems such as noise, temperature control of accessories and equipment in the nacelle, as well as improved safety features, are necessary in a modern high by-pass engine installation. The means of supporting the engine, cowling design, and maintainability features combine to improve the state of the art that a more economic airplane will result.
Technical Paper

777 Automated Spar Assembly Tool - Second Generation

1995-09-01
952172
The Automated Spar Assembly Tool (ASAT II) at the Everett, Washington, 777 Boeing manufacturing facility could be the largest automated fastening cell in the commercial aircraft industry. Based on the success of the ASAT I, Boeing's 767 spar assembly tool, the 285-foot long ASAT II cell was needed to accurately position and fasten the major spar components (chords and web), then locate and fasten over 100 components (ribposts and stiffeners) to assemble the 777 forward and rear wing spars. From its inception in 1990 to the first drilled hole in January 1993 and through two years of spar production, the more advanced ASAT II has proven to be a greater success than even its 767 ASAT I predecessor. This massive automated fastening system consistently provides accurate hole preparation, inspection, and installation of three fastener types ranging from 3/16 inches to 7/16 inches in diameter.
Technical Paper

912iS Fuel Injected Aircraft Engine

2012-10-23
2012-32-0049
The 912 engine is a well known 4-cylinder horizontally opposed 4-stroke liquid-/air-cooled aircraft engine. The 912 family has a strong track record: 40 000 engines sold / 25 000 still in operation / 5 million flight hours annually. 88% of all light aircraft OEMs use Rotax engines. The 912iS is an evolution of the Rotax 912ULS carbureted engine. The “i” stands for electronic fuel injection which has been developed according to flight standards, providing a better fuel efficiency over the current 912ULS of more than 20% and in a range of 38% to 70% compared to other competitive engines in the light sport, ultra-light aircraft and the general aviation industry. BRP engineers have incorporated several technology enhancements. The fully redundant digital Engine Control Unit (ECU) offers a computer based electronic diagnostic system which makes it easier to diagnose and service the engine.
Technical Paper

A -183°C Cryogenic Freezer for the International Space Station

2000-07-10
2000-01-2325
In the frame of the CRYOSYSTEM A-phase study financed by the European Space Agency, AIR LIQUIDE (France) and ORBITAL HYDRAULIC-BREMEN (Germany) have been studying a -183°C freezer to be used on-board the International Space Station for freezing and storing biological samples.
Technical Paper

A 10KW Modular Inverter for 28 VDC to 120/240 VAC Power Conversion

2006-11-07
2006-01-3074
U S Army tactical vehicles are equipped with a wide range of electrical and electronic equipment to support a variety of missions. This equipment typically requires AC input power with varying voltage, power and phasing requirements. Presently, separate inverters with different voltage, power, and phase ratings are necessary to power the equipment, which imposes maintenance and support problems during field deployments. Avionic Instruments Inc. has developed a scalable inverter system that operates from 28V vehicular power and provides outputs that can easily be configured for a variety of load requirements.
Technical Paper

A Bayesian Belief Network for Aircraft Tire Condition Assessment

1998-04-06
981213
This paper presents an application of Bayesian Belief Networks for modeling the uncertainty in aircraft safety diagnostics. Belief networks or influence diagrams represent possible means to efficiently model uncertain causal relationships among components of a system. HUGIN is a software for the construction of knowledge based systems based on Bayesian networks. A HUGIN prototype is dicussed to illustrate how a Bayesian approach could be used to support the decision search routine of aircraft safety inspectors when diagnosing equipment of subsystem malfunctions. The example focuses on diagnostic procedures for assessing aircraft tire condition.
Technical Paper

A Benchmark Case for Aerodynamics and Aeroacoustics of a Low Pressure Axial Fan

2016-06-15
2016-01-1249
A low pressure axial fan for benchmarking numerical methods in the field of aerodynamics and aeroacoustics is presented. The generic fan for this benchmark is a typical fan to be used in commercial applications. The design procedure was according to the blade element theory for low solidity fans. A wide range of experimental data is available, including aerodynamic performance of the fan (fan characteristic curve), fluid mechanical quantities on the pressure and suction side from laser Doppler anemometer (LDA) measurements, wall pressure fluctuations in the gap region and sound characteristics on the suction side from sound power and microphone array measurements. The experimental setups are described in detail, as to ease reproducibility of measurement positions. This offers the opportunity of validating aerodynamic and aeroacoustic quantities, obtained from different numerical tools and procedures.
X