Refine Your Search

Topic

Author

Affiliation

Search Results

Viewing 1 to 20 of 14124
Technical Paper

10 Years of STOL - The Twin Otter's First Decade

1975-02-01
750596
The Twin Otter was designed as a utility bushplane for operation in the Canadian north. While it has fulfilled that role, it has also been widely adopted for use in urban commuter services which do not demand its STOL and rough field capabilities. Now, after 10 years, these commuter services are widening in scope to the point where these virtues, hitherto unused, are becoming significant. The Twin Otter, by its continued presence over this decade, has helped mould the STOL services promised for the next.
Technical Paper

100-kWe Lunar/Mars Surface Power Utilizing the SP-100 Reactor with Dynamic Conversion

1992-08-03
929446
An integration study was performed coupling an SP-100 reactor with either a Brayton or Stirling power conversion subsystem. A power level of 100 kWe was selected for the study. The power system was to be compatible with both the lunar and Mars surface environment and require no site preparation. In addition, the reactor was to have integral shielding and be completely self-contained, including its own auxiliary power for start-up. Initial reliability studies were performed to determine power conversion redundancy and engine module size. Previous studies were used to select the power conversion optimum operating conditions (ratio of hot-side temperature to cold-side temperature). Results of the study indicated that either the Brayton or Stirling power conversion subsystems could be integrated with the SP-100 reactor for either a lunar or Mars surface power application.
Technical Paper

21st Century Aircraft Potable Water Systems

1999-10-19
1999-01-5556
Aircraft potable (drinking) water systems haven’t changed significantly in the last half-century. These systems consist of cylindrical water tanks pressurized by bleed air from the jet engines, with insulated stainless steel distribution lines. What has changed recently is the increase in the possibility of aircraft picking up contaminated drinking water at foreign and domestic stops. Customer awareness of these problems has also changed - to the point where having reliable drinking water is now a competitive issue among airlines. Old style potable water systems that are used on modern aircraft are high maintenance and exacerbate the growth of microbes because the water is static much of the time. The integrity of some pressurized water tanks are also a concern after years of use. Cost-effective mechanical and biological solutions exist that can significantly reduce the amount of chemicals added and provide good potable water.
Technical Paper

21st Century Lunar Exploration: Advanced Radiation Exposure Assessment

2006-07-17
2006-01-2106
On January 14, 2004 President George W Bush outlined a new vision for NASA that has humans venturing back to the moon by 2020. With this ambitious goal, new tools and models have been developed to help define and predict the amount of space radiation astronauts will be exposed to during transit and habitation on the moon. A representative scenario is used that includes a trajectory from LEO to a Lunar Base, and simplified CAD models for the transit and habitat structures. For this study galactic cosmic rays, solar proton events, and trapped electron and proton environments are simulated using new dynamic environment models to generate energetic electron, and light and heavy ion fluences. Detailed calculations are presented to assess the human exposure for transit segments and surface stays.
Technical Paper

3-Dimensional Lightning Observations Using a Time-of-Arrival Lightning Mapping System

2001-09-11
2001-01-2881
A lightning mapping system has been developed that locates the sources of VHF radiation from lightning discharges in three spatial dimensions and time. The system consists of several VHF receivers distributed over an area of about 100 km diameter. The system locates VHF radiation sources over the array with an accuracy of about 100 m. The system locates sources out to 250 km from the center of the array with reduced accuracy. The observations are found to reflect the basic charge structure of electrified storms.
Technical Paper

3D Computational Methodology for Bleed Air Ice Protection System Parametric Analysis

2015-06-15
2015-01-2109
A 3D computer model named AIPAC (Aircraft Ice Protection Analysis Code) suitable for thermal ice protection system parametric studies has been developed. It was derived from HASPAC, which is a 2D anti-icing model developed at Wichita State University in 2010. AIPAC is based on the finite volumes method and, similarly to HASPAC, combines a commercial Navier-Stokes flow solver with a Messinger model based thermodynamic analysis that applies internal and external flow heat transfer coefficients, pressure distribution, wall shear stress and water catch to compute wing leading edge skin temperatures, thin water flow distribution, and the location, extent and rate of icing. In addition, AIPAC was built using a transient formulation for the airfoil wall and with the capability of extruding a 3D surface grid into a volumetric grid so that a layer of ice can be added to the computational domain.
Technical Paper

A CFD Approach for Predicting 3D Ice Accretion on Aircraft

2011-06-13
2011-38-0044
In this work, a newly developed iced-aircraft modeling tool is applied to wings, engine inlets, and helicopter rotors. The tool is based on a multiscale-physics, unstructured finite-volume CFD approach and is applicable to general purpose aircraft icing applications. The present approach combines an Eulerian-based droplet-trajectory solver that is loosely coupled, in a time-accurate manner, to a surface-film and ice-evolution model. The goal of the model is to improve the fidelity of ice accretion modeling on dynamic geometries and for three-dimensional ice shapes typical of helicopter rotors. The numerical formulation is discussed and presented alongside 2D and 3D static validation cases, and dynamic helicopter rotors. The present results display good validation for predicting ice shape on a variety of geometries, and a strong initial capability of modeling ice forming on helicopters in forward flight.
Technical Paper

A Canopy Model for Plant Growth Within a Growth Chamber: Mass and Radiation Balance for the Above Ground Portion

1991-07-01
911494
As humans move into outer space, need for air, clean water and food require that green plants be grown within all planetary colonies. The complexities of ecosystems require a sophisticated understanding of the interactions between the atmosphere, all nutrients, and life forms. While many experiments must be done to find the relationships between mass flows and chemical/energy transformations, it seems necessary to develop generalized models to understand the limitations of plant growth. Therefore, it is critical to have a robust modelling capability to provide insight into potential problems as well as to direct efficient experimentation. Last year we reported on a simple leaf model which focused upon the mass transfer of gases, radiation/heat balances, and the production of photosynthetically produced carbohydrate. That model indicated some of the plant processes which had to be understood in order to obtain parameters specific for each species.
Technical Paper

A Catalytic Combustion System Coupled with Adsorbents for Air Clean Up in Sealed Spacecraft Environment

2003-07-07
2003-01-2624
Catalytic combustion coupled with activated carbon and molecular sieve adsorbents is applicable to all areas of air and gas clean up ranging from high to low levels of pollutants and trace contaminants control in a spacecraft environment is of no exception. In this study we propose a combined activated charcoal and catalytic combustion system based on a 70 watt power input achieving 350°C, operating on a 6 hour per 24 hour day catalytic cycle with an actual flow of 10.6 l min-1 in a residual free volume of 60 m3.
Technical Paper

A Cementitious Tooling/Molding Material-Room Temperature Castable, High Temperature Capable

1985-04-01
850904
DASH 47R is a cementitious composite initially formulated for use as an autoclave molding/tooling material. A unique matrix and aggregate system imparts unusually high strength and excellent vacuum integrity to DASH 47 at moderately high temperatures even though DASH 47 molds are cast at ambient temperature over commonly used pattern materials. This paper reviews the formulation and properties of DASH 47, and outlines its fabrication method and curing schedule for thin-shelled autoclave tools. In addition, examples of other molding applications for DASH 47 are shown in this paper.
Technical Paper

A Comparison of Fatigue Test Techniques for Gas Turbine Oils - (Report of the CRC-Aviation Bearing Fatigue Panel of the Group on Gas Turbine Lubrication)

1968-02-01
680322
A number of specimen life performance tests were conducted on three test lubricants selected to demonstrate their gross ranking capabilities. The results indicated that the test rigs should be used only for gross ranking. A large difference in magnitude of life values were obtained even though agreement in gross ranking was obtained by three out of the five participating laboratories. Further testing is recommended under preselected test conditions and lubricants.
Technical Paper

A Comparison of the Radiation Environments in Deep Space

2007-07-09
2007-01-3114
Both humans and onboard radiosensitive systems (electronics, materials, payloads and experiments) are exposed to the deleterious effects of the harsh space radiations found in the space environment. The purpose of this paper is to present the space radiation environment extended to deep space based on environment models for the moon, Mars, Jupiter, and Saturn and compare these radiation environments with the earth's radiation environment, which is used as a comparative baseline. The space radiation environment consists of high-energy protons and electrons that are magnetically “trapped” in planetary bodies that have an intrinsic magnetic field; this is the case for earth, Jupiter, and Saturn (the moon and Mars do not have a magnetic field). For the earth this region is called the “Van Allen belts,” and models of both the trapped protons (AP-8 model) and electrons (AE-8 model) have been developed.
Technical Paper

A Cooling System for the EAPU Shuttle Upgrade

2001-07-09
2001-01-2152
The Shuttle orbiter currently uses hydrazine-powered APU’s for powering its hydraulic system pumps. To enhance vehicle safety and reliability, NASA is pursuing an APU upgrade where the hydrazine-powered turbine is replaced by an electric motor pump and battery power supply. This EAPU (Electric APU) upgrade presents several thermal control challenges, most notably the new requirement for moderate temperature control of high-power electronics at 132 °F (55.6 °C). This paper describes how the existing Water Spray Boiler (WSB), which currently cools the hydraulic fluid and APU lubrication oil, is being modified to provide EAPU thermal management.
Technical Paper

A DISCUSSION OF SOME RECENT DEVELOPMENTS IN AIRCRAFT ENGINE OIL FILTRATION

1957-01-01
570233
An important current engineering problem in the aviation field involves the providing of increasingly effective lubricating oil filtration for today's more advanced aircraft engines. The critical demands of the higher powered reciprocating engines and the new gas turbine engines, together with the strong desire to reduce aircraft operating and maintenance costs require considerable refinement and improvement in oil filtration methods. This paper discusses some recent developments in scavenge oil filtration and describes a basic, new filter design.
Technical Paper

A Discussion on the Effects and Mitigation of Single Event Upsets on Avionics Systems to Help in Developing Future Requirements

2011-10-04
2011-36-0256
Avionics Systems are increasingly used to perform safety-critical functions at high altitudes. But their increasing capacity and concentration of memory and logics leads to more frequent occurrences of single event upsets, especially in high altitudes. In this work we discuss the effects and mitigation of single event upsets on avionics systems to help in developing future requirements. To do that we initially present the concepts of radiation environment of the atmosphere, radiation induced errors, single event upsets, etc. Then, we discuss some of their effects on avionic systems and ways of mitigation. Finally, we discuss provisions to demand the adoption of such mitigation measures, and their sufficiency. This will help in developing future requirements to accomplish the objectives of a safe operation of civil transportation aircraft.
Technical Paper

A Discussion on the Process of Eliciting and Validating Requirements to Handle Single Event Upsets in Avionic Systems

2012-10-02
2012-36-0519
Avionics Systems are increasingly used to perform safety-critical functions at high altitudes. But their increasing capacity and concentration of memory and logics leads to more frequent occurrences of single event upsets, especially in high altitudes. In this work we discuss the process of eliciting and validating requirements to handle single events upsets in avionic systems. To do that we initially summarize and update the concepts of radiation environment of the atmosphere, radiation induced errors, single event upsets, etc. presented in a previous paper. Then, we discuss some of their effects on avionic systems and ways of mitigation, reported in the literature. Finally, we discuss provisions to demand the adoption of such mitigation measures, and their sufficiency by transforming them into requirements, according to recommendations of compliance described in standards as SAE ARP 4754A and RTCA DO-254.
Technical Paper

A Fastener Analysis Addressing Various Types of Misfit and Its Damage Life Calculations

2013-09-17
2013-01-2312
In a fastening system when there is a small misalignment of the holes, the holes are enlarged to align the axes and a next size fastener is used to fit the joint. But when the misalignment is large then the enlargement need to be proportionally large. In this case a bushing is press fit onto the hole to handle the fastening. If we press fit a bushing, it generates residual stresses in the panel. These residual stresses reduce the damage life of the components on which the bushings were press fit. In the aircraft engine nacelle components the damage life is very critical in various failure conditions such as fan blade out condition, wind milling and bird strike. It increases the flight time in these events. Here four different case studies were considered to study the damage life of the aircraft components made of Aluminum or composite material.
Journal Article

A Fresh Look at Radiation Exposures from Major Solar Proton Events

2008-06-29
2008-01-2164
Solar proton events (SPEs) represent the single-most significant source of acute radiation exposure during space missions. Historically, an exponential in rigidity (particle momentum) fit has been used to express the SPE energy spectrum using GOES data up to 100 MeV. More recently, researchers have found that a Weibull fit better represents the energy spectrum up to 1000 MeV (1 GeV). In addition, the availability of SPE data extending up to several GeV has been incorporated in analyses to obtain a more complete and accurate energy spectrum representation. In this paper we discuss the major SPEs that have occurred over the past five solar cycles (~50+ years) in detail - in particular, Aug 1972 and Sept & Oct 1989 SPEs. Using a high-energy particle transport/dose code, radiation exposure estimates are presented for various thicknesses of aluminum. The effects on humans and spacecraft systems are also discussed in detail.
Technical Paper

A Generalized Analytical Model for the Micro-dosimeter Response

2007-07-09
2007-01-3112
An analytical prediction capability for space radiation in Low Earth Orbit (LEO), correlated with the Space Transportation System (STS) Shuttle Tissue Equivalent Proportional Counter (TEPC) measurements is presented. The model takes into consideration the energy loss straggling and chord length distribution of the detector, and is capable of predicting energy deposition fluctuations in a micro-volume by incoming ions through direct events. The charged particle transport calculations correlated with STS 56, 51, 110 and 114 flights are accomplished by using the most recent version (2005) of the Langley Research Center (LaRC) deterministic ionized particle transport code High charge (Z) and Energy TRaNsport (HZETRN) which has been extensively verified with laboratory beam measurements and available space flight data.
Technical Paper

A Generalized Photosynthetic Model for Plant Growth Within a Closed Artificial Environment

1990-07-01
901331
As mankind explores the planets, human needs for air, clean water, and food suggest that plants be carried to and exist on his colonies. The complexities of even a simple ecosystem of humans and a single plant crop require a sophisticated understanding of the interactions between atmosphere, nutrients and lifeforms. While many experiments could be done to find the relationships between mass flows and chemical/energy transformations, it would be simpler to develop a generalized model of plant growth, to validate it, and to use it to test the variations possible within a closed environment. Such a model specifically designed for a closed space system should focus on gas mass transfers through the photosynthetic processes, leaf radiation/heat balances, and the production/distribution of carbohydrates.
X