Refine Your Search

Topic

Search Results

Technical Paper

A Basic Study of “Energy-Absorbing” Vehicle Structure and Occupant Restraints by Mathematical Model

1967-02-01
670897
Simplified mathematical modeling has been employed to investigate the relationship between automobile forestructure energy absorption and the restraint loads applied to passengers during a 30 mph barrier collision. A two-massmodel was developed and validated to compute restraint loading from a given passenger compartment deceleration. The effect of various deceleration curves, representing forestructure modifications, is reported. A “constant force” restraint system is also evaluated.
Technical Paper

A Procedure for Measuring Instrument Panel Visibility

1972-02-01
720232
A procedure has been developed for measuring the relative visibility of automotive instrument panel graphics and components. Through use of a Luckiesh-Moss Visibility Meter, discreet values of visibility can be assigned to visual targets and related to driver reaction time. Also, eyes off the road lapsed time boundaries may be established which will define visibility requirements necessary to serve the total driver population. These requirements can be translated into meaningful guidelines or standards for visibility attributes such as size, shape, color, contrast, and position of graphics, controls, and indicators. How visibility measurements are made and interpreted and the visibility measuring facility are discussed in this paper.
Technical Paper

Common Tooling for Left-Hand and Right-Hand Instrument Panels

1997-02-24
970442
In many instances, automotive companies wish to create both a left-hand drive and a right-hand drive version of the same vehicle. When the vehicle has relatively low sales volumes, it is imperative to reduce investment costs wherever possible. One successful - if challenging - way is by producing the instrument panel system for both versions off the same tooling. This feat was accomplished in the case of the '97 Jeep® Wrangler, saving the company approximately $7 million.
Technical Paper

Comparison of Energy Management Materials for Head Impact Protection

1997-02-24
970159
Energy management materials are widely used in automotive interiors in instrument panel, knee bolster, and door absorber applications to reduce the risk of injury to an occupant during a crash. Automobile manufacturers must meet standards set by the National Highway Traffic Safety Administration (NHTSA) that identify maximum levels of injury to an occupant. The recent NHTSA upgrade to the Federal Motor Vehicle Safety Standard (FMVSS) 201 test procedure(1) for upper interior head impact protection has prompted energy management materials' use in several new areas of affected vehicles. While vehicle evaluations continue, results to date show that energy management foams can be effective in reducing the head injury criterion [HIC(d)] to acceptable government and OEM levels.
Technical Paper

Computer Aided Design Analysis of Instrument Panel Impact Zone

1983-02-01
830260
In anticipation of complying with European standards for impact protection, an instrument panel design was analyzed to determine A. impact zone boundaries B. impact test velocitiesfor the head of a front seat passenger. Chrysler computer aided design (C.A.D.) surfacing capabilities were utilized in the solution. Early knowledge of impact zone location is important to intelligent design decisions; knowledge of impact velocities aids in performing compliance testing.
Technical Paper

Computer Simulation of Automotive Air Conditioning -Components, System, and Vehicle

1972-02-01
720077
The basic theory and the techniques upon which the Air Conditioning Analytical Simulation Package (A/CASP) computer program system was developed is outlined. Methods for simulating car air conditioning components, systems, and cool-down performance by computerized mathematical models are presented. Solution techniques for the models of the evaporator, condenser, compressor, and vehicle are outlined. The correlation of test data and analytical predictions is demonstrated.
Technical Paper

Developments in Dynamometer Control Methods

1972-02-01
720453
The application of automation to dynamometer testing of engines has led to the development of specialized circuits and techniques to compensate for limitations inherent within the electromechanical systems used to implement automation theory. Stable, quick response to a programmed speed change has been achieved for engine-automatic transmission testing by the use of a parallel feedback technique. Vehicle simulation using analog computer circuitry and road test data is used to calculate torque requirements from programmed acceleration-time and velocity-time curves. Similar circuitry is used to calculate engine-transmission output torque from dynamometer parameters.
Technical Paper

Evaluation of Automotive Front Seat Structure Constructed of Polymer Composite

1992-02-01
920335
Seats play an important role in determining customer satisfaction and safety. They also represent three to five percent of the overall vehicle cost and weight. Therefore, automotive manufacturers are continuously seeking ways to improve the areas of comfort, safety, reliability, cost and weight within the seat system. The purpose of this paper is to review the development of an automotive front seat constructed of injection molded nylon frames and metal mechanisms. This development program was initiated for the purpose of reducing vehicle weight while increasing the reliability and safety of the front seats. This paper will review the material and process selection decision, a design overview, the performance criteria and the results of tests performed on the injection molded front seats.
Technical Paper

Fuel Mixture Temperature Variations in the Intake Port

1996-05-01
961194
Temperature variation and heat transfer phenomena in the intake port of a spark ignition engine with port injection play a significant role in the mixture preparation process, especially during the warm up period. Cold temperatures in the intake port result in a large amount of liquid-fuel film. Since the liquid-fuel film responds at a slower speed than the gas-phase flow during transient operations, the liquid-fuel film acts as a fuel sink (or source) and can degrade the vehicle's driveability, fuel economy, and emissions control. In this work, a one-dimensional, unsteady, multicomponent, multiphase flow model has been developed to study the mixture formation process in the intake port for a modern, multipoint-fuel-injection, gasoline engine. The droplet, liquid film and gas-phase mixture temperature variations and the effects of charge air, initial fuel and port wall temperatures involved in generating the air-fuel mixture are examined.
Technical Paper

Fundamental Studies of Polyurethane Foam for Energy Absorption in Automotive Interiors

1991-02-01
910404
This paper describes and characterizes energy-absorbing polyurethane foam as exemplified foam made with Bayfill EA systems. This paper emphasizes its use for automotive passive restraint systems. Static and dynamic properties will be presented. In addition the effect of velocity, weight, density, and vehicle environment on energy absorption will be discussed. RECENT federal requirements for the safety of occupants in automobiles has prompted the industry to investigate light weight and low cost materials for energy management. The use of passive restraints in interiors, i.e. air-bags, has necessitated the development of energy-absorbing instrument panels (IP) for passenger cars and multi-purpose vehicles. When air-bags are deployed in a collision the passenger tends to slide under the bag impacting the knee into the instrument panel. Foam as an energy absorbing material has played an important role in the development of knee bolsters for these interiors.
Technical Paper

How Seat Design Characteristics Affect Impact Injury Criteria

1986-03-01
860638
The seat can play an important part in improving occupant safety during a car impact. This paper discusses research done to determine how characteristics of seat design affect occupant safety. Impact simulator tests have been run which determine how variation of five specific seat characteristics affect FMVSS 208 occupant injury criteria. These tests simulated a 48.3 km/h (30 mi/h) frontal Oarrier impact using a 50th percentile male anthropomorphic device restrained by a two-point passive shoulder belt system. The five seat characteristics tested were the following: 1) Seat Frame Angle, 2) Seat Frame Structure, 3) H-Point Distance Above the Seat Frame, 4) Energy Absorption of the Seat Frame, and 5) Seat Cushion Foam Firmness. Test results show that the first characteristic can improve all injury criteria. The other four will improve some injury criteria at the expense of others.
Technical Paper

Improvements in the Dent Resistance of Steel Body Panels

1992-02-01
920243
A computer-controlled body panel testing machine has been used to quantify stiffness and dent resistance of body panels at Chrysler. The influence of yield strength and local reinforcement on the mechanical behavior of automotive door panels has been investigated. Medium strength steels in the range of 210 -240 MPa yield strength have produced significant improvements in dent resistance over a 160 MPa yield strength steel. Considerable improvements in dent resistance can also be attributed to the use of local, adhesively attached, glass fiber reinforcement patches. The effects of boundary conditions and panel shape on stiffness and dent resistance are illustrated in this application.
Technical Paper

Life Cycle Management of Hydraulic Fluids and Lubricant Oils at Chrysler

1998-11-30
982221
A systematic life cycle management (LCM) approach has been used by Chrysler Corporation to compare existing and alternate hydraulic fluids and lubricating oils in thirteen classifications at a manufacturing facility. The presence of restricted or regulated chemicals, recyclability, and recycled content of the various products were also compared. For ten of the thirteen types of product, an alternate product was identified as more beneficial. This LCM study provided Chrysler personnel with a practical purchasing tool to identify the most cost effective hydraulic fluid or lubricant oil product available for a chosen application on an LCM basis.
Technical Paper

Network I/O and System Considerations

1995-02-01
950036
The J1850 bus requirements promote an unique and well characterized physical layer behavior developed through the learning curve of previous multiplex solutions. Design requirements such as: 1) Reliably interconnecting all of the vehicle's most complex modules, 2) Consistently withstanding the vehicle's harsh environment, and 3) Meeting SAE's functionality requirements, were all a formidable task to achieve. This paper will highlight the path taken to achieve a J1850 Bus interface which successfully met all of the design and functional goals. Chrysler's C2D insights will be discussed and related to goals for J1850. Other design considerations will also be discussed such as EMC issues, custom test equipment, and vehicle and component testability. In turn, silicon processes with special structures and topologies will be discussed relating the specific design with the needed electrical behavior. The HIP7020 J1850 BUS TRANSCEIVER I/O for MULTIPLEX WIRING accomplishes these requirements.
Technical Paper

OPNET J1850 Network Simulator

1995-02-01
950037
MIL 3's OPNET simulator was used to model Chrysler's J1850 bus. Modeled were both J1850 bus characteristics and those portions of control modules (e.g., the engine controller) which communicate on the bus. Current Chrysler control module algorithms and proposed Chrysler J1850 message formats were used to design the control module models. The control module models include all messages which are transmitted at fixed intervals over the J1850 bus. The effects of function-based messages (e.g., messages to be transmitted on a particular sensor or push-button reading) on system load were investigated by transmitting an additional message with a fixed, relatively high priority at 50 millisecond intervals.
Technical Paper

Panel Contribution Study: Results, Correlation and Optimal Bead Pattern for Powertrain Noise Reduction

1997-05-20
971953
To understand how the passenger compartment cavity interacts with the surrounding panels (roof, windshield, dash panel, etc) a numerical panel contribution analysis was performed using FEA and BEA techniques. An experimental panel contribution analysis was conducted by Reiter Automotive Systems. Test results showed good correlation with the simulation results. After gaining some insight into panel contributions for power train noise, an attempt was made to introduce beads in panels to reduce vibration levels. A fully trimmed body structural-acoustic FEA model was used in this analysis. A network of massless beam elements was created in the model. This full structural-acoustic FEA model was then used to determine the optimal location for the beads, using the added beams as optimization variables.
Technical Paper

Plastic Material Separation on Vehicle Subsystems

1997-02-24
970414
Hand dismantling of certain automotive parts has been an accepted process to remove high value materials, but in large scale recycling this may not be economical. In plastics, a pure non contaminated material stream is critical for maintaining high material values and this means designing plastic parts that can be machine separated. One candidate for separating the plastics in vehicle subsystems such as instrument panels and door trim panels is density separation. In order to better understand what processes are required to develop design requirements for automated plastic separation methods Chrysler and the Vehicle Recycling Partnership have undertaken a major materials separation study with MBA Polymers. In this paper, we describe the material separation methods and the application of these methods to three automotive interior assemblies.
Technical Paper

Refinement of the Interior Sound Quality of Chrysler's Dodge and Plymouth

1995-05-01
951309
The low noise and linear sound level characteristics of passenger vehicles are receiving increased scrutiny from automotive journalists. A linear noise level rise with increasing engine rpm is the first basic aspect of insuring an acceptable vehicle interior engine noise sound quality. In a typical case of structural response to engine vibration input, interior noise begins to rise with rpm, remains constant or even drops as the engine continues to accelerate, and then exhibits a noise period corresponding to the structure's natural frequency. Frequently this nonlinearity is bothersome to the customer. During the development process, Chrysler's Dodge and Plymouth Neon exhibited just such a nonlinear rise in noise level, heard within the passenger compartment, when the vehicle was accelerated through 4200 rpm.
X