Refine Your Search

Topic

Search Results

Viewing 1 to 14 of 14
Journal Article

7-XDCT: Compact and Cost-Efficient Dual Clutch Transmission for Small and Mid-Size Vehicles

2013-04-08
2013-01-1271
The automotive industry continues to develop new powertrain technologies aimed at reducing overall vehicle level fuel consumption. The ongoing trends of “downsizing” and “down speeding” have led to the development of turbocharged engines with low displacement and high torque density. In order to meet the launch response requirements with these engines as well as fuel economy needs, transmissions with large ratio spreads will need to be developed. Due to the lack of torque amplification from the torque converter, the next generation of dual clutch transmissions (DCT) will need to have larger launch ratios and ratio spreads than currently available in production today. This paper discusses the development of a new family of DCT (called “xDCT”) for use in front wheel drive vehicles, aimed at meeting some of these challenges. The xDCT family features two innovative concepts, the idea of “gear generation” and “supported shifts”.
Technical Paper

A Low NVH Range-Extender Application with a Small V-2 Engine - Based on a New Vibration Compensation System

2012-10-23
2012-32-0081
The interest in electric propulsion of vehicles has increased in recent years and is being discussed extensively by experts as well as the public. Up to now the driving range and the utilization of pure electric vehicles are still limited in comparison to conventional vehicles due to the limited capacity and the long charging times of today's batteries. This is a challenge to customer acceptance of a pure electric vehicle, even for a city car application. A Range Extender concept could achieve the desired customer acceptance, but should not impact the “electric driving” experience, and should not cause further significant increases in the manufacturing and purchasing cost. The V2 engine concept presented in this paper is particularly suited to a low cost, modular vehicle concept. Advantages regarding packaging can be realized with the use of two generators in combination with the V2 engine.
Journal Article

Automated Verification and Validation Methods for Transmission Control Software

2015-04-14
2015-01-0163
With the increasing popularity of seamless gear changing and smooth driving experience along with the need for high fuel efficiency, transmission system development has rapidly increased in complexity. So too has transmission control software while quality requirements are high and time-to-market is short. As a result, extensive testing and documentation along with quick and efficient development methods are required. FEV responds to these challenges by developing and integrating a transmission software product line with an automated verification and validation process according to the concept of Continuous Integration (CI). Hence, the following paper outlines a software architecture called “PERSIST” where complexity is reduced by a modular architecture approach. Additionally, modularity enables testability and tracking of quality defects to their root cause.
Journal Article

Contribution of High Accuracy Temperature Sensors Towards Fuel Economy and Robust Calibration

2014-04-01
2014-01-1548
Tighter emission limits are discussed and established around the world to improve quality of the air we breathe. In order to control global warming, authorities ask for lower CO2 emissions from combustion engines. Lots of efforts are done to reduce engine out emissions and/or reduce remaining by suitable after treatment systems. Watlow, among others, a manufacturer of high accurate, active temperature sensor ExactSense™, wanted to understand if temperature sensor accuracy can have an influence on fuel consumption (FC). For this purpose a numerical approach was chosen where several non-road driving cycles (NRTCs) were simulated with the data base of a typical Stage IV heavy duty diesel engine. The engine is equipped with an exhaust gas after treatment system consisting of a DOC, CDPF and an SCR. In this work scope, the investigations shall be restricted to the FC benefits obtained in the active and passive DPF regeneration.
Technical Paper

Developing Drivetrain Robustness for Small Engine Testing

2013-04-08
2013-01-0400
The increased demand in fuel economy and the reduction of CO₂ emissions results in continued efforts to downsize engines. The downsizing efforts result in engines with lower displacement as well as lower number of cylinders. In addition to cylinder and displacement downsizing the development community embarks on continued efforts toward down-speeding. The combination of the aforementioned factors results in engines which can have high levels of torsional vibrations. Such behavior can have detrimental effects on the drivetrain particularly during the development phase of these. Driveshafts, couplings, and dynamometers are exposed to these torsional forces and depending on their frequency costly damages in these components can occur. To account for these effects, FEV employs a multi-body-system modeling approach through which base engine information is used to determine optimized drivetrain setups. All mechanical elements in the setup are analyzed based on their torsional behavior.
Technical Paper

Development of Combustion System for a 1-Liter Advanced Turbocharged Gasoline Direct Injection 3-Cylinder Engine

2016-10-17
2016-01-2243
In recent years, more attention has been focused on environment pollution and energy source issues. As a result, increasingly stringent fuel consumption and emission legislations have been implemented all over the world. For automakers, enhancing engine’s efficiency as a must contributes to lower vehicle fuel consumption. To reach this goal, Geely auto started the development of a 3-cylinder 1.0L turbocharged direct injection (TGDI) gasoline engine to achieve a challenging fuel economy target while maintaining fun-to-drive and NVH performance. Demanding development targets for performance (specific torque 205Nm/L and specific power 100kW/L) and excellent part-load BSFC were defined, which lead to a major challenge for the design of the combustion system. Considering air/fuel mixture, fuel wall impingement and even future potential for lean burn combustion, a symmetrical layout and a central position for the injector with 200bar injection pressure was determined.
Technical Paper

Development of a New 1.8L Down-Speeding Turbocharged Gasoline Engine with Miller Cycle

2018-09-10
2018-01-1712
Upcoming China 4th stage of fuel consumption regulation and China 6a emission legislation require improvement of many existing engines. This paper summarizes an upgrade of combustion system and mechanical layout for a four-cylinder engine family. Based on an existing production process for a naturally aspirated 2.0-liter gasoline engine, a 1.8-liter down-speeded and turbocharged gasoline engine is derived. Starting development by analysis of engine base geometry, a layout for a Miller-Cycle gas exchange with early closing of intake valves is chosen. Requirements on turbocharger configuration are investigated with one-dimensional gas exchange simulation and combustion process will be analyzed by means of 3D-CFD simulation. Challenging boundary conditions of a very moderate long-stroke layout with a stroke/bore-ratio of only 1.037 in combination with a cost efficient port fuel injection system and fixed valve lift profiles are considered.
Technical Paper

In-Use Compliance Opportunity for Diesel Powertrains

2018-04-03
2018-01-0877
In-use compliance under LEV III emission standards, GHG, and fuel economy targets beyond 2025 poses a great opportunity for all ICE-based propulsion systems, especially for light-duty diesel powertrain and aftertreatment enhancement. Though diesel powertrains feature excellent fuel-efficiency, robust and complete emissions controls covering any possible operational profiles and duty cycles has always been a challenge. Significant dependency on aftertreatment calibration and configuration has become a norm. With the onset of hybridization and downsizing, small steps of improvement in system stability have shown a promising avenue for enhancing fuel economy while continuously improving emissions robustness. In this paper, a study of current key technologies and associated emissions robustness will be discussed followed by engine and aftertreatment performance target derivations for LEV III compliant powertrains.
Journal Article

Influence of Advanced Technology for Thermal Management on SUV

2016-04-05
2016-01-0238
Reducing fuel consumption is a major challenge for vehicle, especially for SUV. Cooling loss is about 30% in total energy loss under NEDC (New European Driving Cycle) cycle. It is necessary to optimize vehicle thermal management system to improve fuel economy. Otherwise, rapid warm-up is beneficial for friction reduction and passenger comfort in cold-start. Vehicle thermal behavior is influenced by cooling system layout, new technology and control strategy. Thermal management simulation is effective to show the energy flow and fuel consumption under the influence of new technology under NEDC cycle. So 1D thermal management simulation model is created, including vehicle, cooling system, lubrication system and detailed engine model with all friction components. And the interrelations between all the components are considered in the model. For model calibration, large amount of data is obtained from vehicle tests such as transient fuel consumption and transient coolant temperature.
Technical Paper

Meeting 2025 CAFE Standards for LDT with Fuel-Efficient Diesel Powertrains - Approaches and Solutions

2017-03-28
2017-01-0698
In view of changing climatic conditions all over the world, Green House Gas (GHG) saving related initiatives such as reducing the CO2 emissions from the mobility and transportation sectors have gained in importance. Therefore, with respect to the large U.S. market, the corresponding legal authorities have defined aggressive and challenging targets for the upcoming time frame. Due to several aspects and conditions, like hesitantly acting clients regarding electrically powered vehicles or low prices for fossil fuels, convincing and attractive products have to be developed to merge legal requirements with market constraints. This is especially valid for the market segment of Light-Duty vehicles, like SUV’S and Pick-Up trucks, which are in high demand.
Technical Paper

Modelling a Gasoline Compression Ignition (GCI) Engine Concept

2014-04-01
2014-01-1305
Future engines and vehicles will be required to reduce both regulated and CO2 emissions. To achieve this performance, they will be configured with advanced hardware and engine control technology that will enable their operation on a broader range of fuel properties than today. Previous work has shown that an advanced compression ignition bench engine can operate successfully on a European market gasoline over a range of speed/load conditions while achieving diesel-like engine efficiency and acceptable regulated emissions and noise levels. Stable Gasoline CI (GCI) combustion using a European market gasoline was achieved at high to medium engine loads but combustion at lower loads was very sensitive to EGR rates, leading to longer ignition delays and a steep cylinder pressure rise.
Technical Paper

Potential of Advanced, Combined Aftertreatment Systems for Light-Duty Diesel Engines to Meet Upcoming EU and US Emission Regulation

2013-09-08
2013-24-0163
The modern DI-diesel engine represents a valuable platform to achieve worldwide tightened CO2 standards while meeting future strengthened emission regulations in the EU and the US. Due to the simultaneous, partially contrary legal demands, new integrated and combined systems are required to allow best overall performance within the upcoming legal frames concerning pollutant emission reduction and minimization of CO2 output. As extended emission relevant areas in the engine map have to be respected in view of RDE and PEMS scenarios in EU, but also facing the LEVIII standards in the US, comprehensive and synchronized technical solutions have to be engineered. Based on furthermore optimized combustion systems with improved combustion efficiency, meaning also lowered exhaust gas temperatures, especially refined and tailored emission control systems are demanded.
Technical Paper

Robust Emission Compliance and Reduction of System Cost by advanced emission-based Diesel engine air management

2015-01-14
2015-26-0089
The continuously strengthened requirements regarding air quality and pollutant reduction as well as GHG emissions further complicate the compliance with legal standards. Especially in view of cost-sensitive applications this demand strongly collides with the EMS set-up and the sensor requirements with still increasing overall system complexity. The paper in hand describes a novel air path control approach, which offers the potential for a flexible use of multiple EGR routes to meet upcoming legislations more robustly, while providing a significant reduction of calibration effort and sensor content at the same time. By using a direct emission based cylinder charge control, also alterations in operational ambient conditions are covered with system reactions according to physical-based rules to enhance the engine-out emission performance without need for tuning of corrections of any air path set point.
Technical Paper

λDSF: Dynamic Skip Fire with Homogeneous Lean Burn for Improved Fuel Consumption, Emissions and Drivability

2018-04-03
2018-01-0891
Dynamic skip fire (DSF) has shown significant fuel economy improvement potential via reduction of pumping losses that generally affect throttled spark-ignition (SI) engines. In DSF operation, individual cylinders are fired on-demand near peak efficiency to satisfy driver torque demand. For vehicles with a downsized-boosted 4-cylinder engine, DSF can reduce fuel consumption by 8% in the WLTC (Class 3) drive cycle. The relatively low cost of cylinder deactivation hardware further improves the production value of DSF. Lean burn strategies in gasoline engines have also demonstrated significant fuel efficiency gains resulting from reduced pumping losses and improved thermodynamic characteristics, such as higher specific heat ratio and lower heat losses. Fuel-air mixture stratification is generally required to achieve stable combustion at low loads.
X