Refine Your Search

Topic

Search Results

Technical Paper

A Comparative Analysis on Corrosion Behavior on Precipitation Hardened Stainless Steel Weldments for Car Parts

2023-11-10
2023-28-0149
Precipitation Hardened Stainless Steel (PHSS) is one of the martensitic steels that possess exceptional strength and corrosion resistance. Because of its characteristics, this PHSS is exclusively adopted in numerous engineering uses such as nuclear, chemical and marine industries. Welding is one of the important methods of joining that helps to make weldments with better performance characteristics. Corrosion behaviour is one of the important characteristics that contribute hugely to marine and other corrosion-related environments and also this is the most common problem for most of the manufacturing industries. The goal of this study was to analyze the PHSS weldments’ corrosive behavior and compare it with that of the two commonly used welding processes, namely MIG and TIG. The corrosive properties of the weldments were evaluated using various mediums, such as nitric acid, ferric chloride, and Oxalic acid.
Technical Paper

Application of Taguchi Approach on Wire Electrical Discharge Machining of SS304 for Automotive Applications

2023-11-10
2023-28-0151
SS304 is a type of stainless steel that is well-known for its high ductility and resistance to corrosion; as a result, it is typically utilized in a variety of applications, such as the exhaust systems of automobiles and the springs that are used in seatbelts. Because of its qualities, it will eventually be employed in a variety of body parts, including fuel tanks and chassis, among other things. Due to its properties, SS304 is known to be incredibly difficult to machine using conventional methods. Through a wire electrical discharge machining process, it is easier to cut complex materials with high surface finishes. In this study, a study was conducted on the WEDM process parameters of SS304 to optimize its machining process. The study was carried out using the DoE approach, which involved planning the various experiments. The parameters of the process, such as the pulse on time, peak current, and off time, were analyzed to determine their performance.
Technical Paper

Application of Taguchi Based ANFIS Approach in Wire Electrical Discharge Machining of Haste Alloy C276 for Automobile Applications

2023-11-10
2023-28-0167
Superalloys, also known as nickel alloys, are widely employed in a wide variety of engineering applications, including the creation of parts for the chemical processing industry and appliances for the food processing industry. Their high heat conductivity and strength, among other characteristics, make them challenging to machine using traditional techniques. Instead, cutting-edge techniques are typically created for the milling of such tougher materials. In this study, we use a modern method called wire electrical discharge machining, which is typically used for working with tougher materials. In order to anticipate WEDM variables, this paper aims to create a Grey-based Artificial Neural Network (ANN) Model and Adaptive Neuro Fuzzy Inference System. The paper uses a Taguchi method to investigate the model’s varying inputs. The purpose of this model is to visualize the process’s varying performance characteristics.
Technical Paper

Application of Taguchi Based ANFIS Approach in Wire Electrical Discharge Machining of Inconel 625 for Automobile Applications

2023-11-10
2023-28-0148
Nickel-based superalloys are most commonly engaged in a numerous engineering use, including the making of food processing equipment, aerospace components, and chemical processing equipment. These materials are often regarded as difficult-to-machine materials in conventional machining approach due to their higher strength and thermal conductivity. Various methods for more effective machining of hard materials such as nickel-based superalloys have been developed. Wire electrical discharge machining is one of them. In this paper, an effect has been taken to develop an adaptive neuro-fuzzy inference system for predicting WEDM performance in the future. To analyse the model’s variable input, the paper employs the Taguchi’s design and analysis techniques. The evolved ANFIS model aims to simulate the process’s various characteristics and predicted values. A comparison of the two was then made, and it was discovered that the predicted values are much closer to the actual outcomes.
Technical Paper

Design and Investigation of Automatic Trash Collecting Machine for Industry

2023-11-10
2023-28-0179
Scrap collection from any location is handled with mortal interference in several places and companies which may be extremely harmful or even dangerous to humanity. The demand for robotization has risen rapidly in recent years, owing to cutting-edge technologies that minimize manpower and threat-taking training directly or indirectly. The main objective of the paper is to study, analyze, investigate the main contribution of waste collecting by workers while cleaning in the Mechanical Industry. In order to ensure the safety of the workers during cleaning we had implemented the Automatic Trash Collecting Machine in the industry. For Fabricating the Trash collecting Machine first we had analyzed the problem in the industry and then we had started the free hand sketch of Trash Collecting Machine. Then the design work of Automatic Trash Collecting Machine is done in the modeling software Catia V5. Then the material selection for our model has been done.
Technical Paper

Development of Adaptive Neuro Fuzzy Inference System Model for CNC Milling of AA5052 Alloy with Minimum Quantity Lubrication by Natural Cutting Fluid

2022-12-23
2022-28-0511
In view of the improvements in manufacturing sectors, which are an important component of any economy’s growth, there is a significant need for new and advanced materials, particularly alloy materials need to be analysed and investigated so that new technologies may be effectively utilized. Materials with low weight and high strength, such as aluminium alloys, are recommended for a variety of applications that require both strength and corrosion resistance, such as marine applications and high-temperature applications. Aluminium alloy Al 5052, a nonferrous material with outstanding properties is an Al-Mg alloy with high thermal conductivity and corrosion products that are non-toxic. Minimum Quantity Lubrication (MQL) is a cost-effective and environmentally friendly method of lubrication employed in a variety of machining processes. The investigation of CNC milling of AA5052 alloy with standard Tungsten Carbide (WC) tool inserts with MQL settings are detailed in this paper.
Technical Paper

Development of Artificial Neural Network Model for CNC Drilling of AA6061 with Coated Textured Tool for Auto Parts

2023-11-10
2023-28-0079
With the progress of manufacturing industries being critical for economic development, there is a significant requirement to explore and scrutinize advanced materials, particularly alloy materials, to facilitate the efficient utilization of modern technologies. Lightweight and high-strength materials, such as aluminium alloys, are extensively suggested for various applications requiring strength and corrosion resistance, including but not limited to automotive, marine, and high-temperature applications. As a result, there is a significant necessity to examine and evaluate these materials to promote their effective use in the manufacturing sectors. This research paper presents the development of an Artificial Neural Network (ANN) model for Computer Numerical Control (CNC) drilling of AA6061 aluminium alloy with a coated textured tool. The primary aim of the study is to optimize the drilling process and enhance the machinability of the material.
Technical Paper

Development of Predictive Models and Prediction of Process Parameters for Wire Electrical Discharge Machining of Monel 400

2022-12-23
2022-28-0491
The numerous applications and desirable attributes of Monel 400 urge many researchers to undertake multiple systematic evaluation studies for diverse manufacturing operations. Because of their exceptional mechanical qualities and great corrosion resistance, nickel-based alloys, particularly Monel 400, are increasing in popularity in a variety of applications. Because of their tendency for rapid work hardening and low thermal conductivity, these materials are particularly difficult to machine using traditional manufacturing techniques. Advanced material removal methodologies have been applied to eliminate such drawbacks and are regarded as a suitable alternative approach to traditional machining processes. Based on the Electrical Discharge Machining technique, Wire Electrical Discharge Machining was developed, which a sophisticated machining technology is used to machine hard materials with complex forms in any electrically conducting materials.
Technical Paper

Evolution of Regression and Neural Network Models on Wire Electrical Discharge Machining of Nickel Based Superalloy

2023-11-10
2023-28-0078
In addition to traditional methods, there are also non-traditional techniques that can be used to overcome the challenges of conventional metal working. One such technique is wire electrical discharge (WEDM). This type of advanced manufacturing process involves making complex shapes using materials. Utilizing intelligent tools can help a company meet its goals. Nickel is a hard metal to machine for various applications such as nuclear, automobile and aerospace. Due its high thermal conductivity and strength, traditional methods are not ideal when it comes to producing components using this material. This paper aims to provide a comprehensive analysis of the various steps in the development of a neural network model for the manufacturing of Inconel 625 alloy which is used for specific applications such as exhaust couplings in sports motor vehicle engines. The study was conducted using a combination of computational and experimental methods.
Technical Paper

Finite Element Analysis of Graphene Based Solar Photonic Battery for Electric Vehicle

2023-09-14
2023-28-0021
The sun has tremendous potential to address the world’s increasing energy needs, but the increased cost of employing lunar power is a considerable hurdle when equated to more conventional energy sources. The low energy density and low conversion efficiency of solar radiation, expensive raw materials, and labor-intensive manufacturing process all contribute to the high cost of a photovoltaic system. In the last ten years, advances in nano science and nanotechnology have opened up new possibilities for the creation of effective solar cells. Designing semiconductor, metal, and polymer nanostructure designs for solar cells has become possible. Understanding the methods involved in the photovoltaic energy conversion like optical and electrical process, has also benefited from theoretical and modelling studies. The high price and insufficient efficiency of current solar cells prevent the widespread usage of solar energy.
Technical Paper

Investigation on Formability of Tailored AA7075 Thin Sheets by Friction Stir Processes

2022-10-05
2022-28-0349
TWBs (tailored welded blanks) technology can open new avenues for obtaining components in the automotive, aerospace and electronics industries. Friction stir process (FSP) can control the properties by deep localized plastic deformation using the non-consumable tool. In this study, the primary objective is to investigate the effects of Graphene nanoparticles (GNPs) in AA7075 material and the effect of FSP graphene NPs on the forming limit curve of the TWBs through experiments. The micrographs of the weldment are obtained by metallography practices. Tensile specimens are separated for evaluating FSP weld zones. Obtained results exhibits the formability limit of AA7075 thin sheets and decrease FSP thin sheets formability as compared with the formability of base metals
Technical Paper

Investigational Analysis on Wire Electrical Discharge Machining of Aluminium Based Composites by Taguchi’s Method

2023-11-10
2023-28-0075
A wide range of engineering domains, such as aeronautical, automobiles, and marine, rely on the use of Metal Matrix Composites (MMC). Due to the excellent properties, such as hardness and strength, Aluminum base MMC are generally adopted in various uses. Due to the increasing number of reinforcement materials being added to the MMC, its properties are expected to improve. In this exploratory analysis, an effort was given to develop a new aluminium-based MMC. The analysis of the machinability of the composite was also performed. The process of creating a new MMC using a stir casting technique was carried out. It resulted in a better and more reinforced composite than its base materials. The reinforcement materials were fabricated using different weight combinations and process parameters, such as the temperature and duration required to stir. Due to the improved properties of the composite, the traditional machining method is not feasible for machining of these materials.
Technical Paper

Investigations on Wire Electrical Discharge Machining of Magnesium Alloy for Automobile Parts

2023-11-10
2023-28-0155
Magnesium alloy, known for its high strength and lightweight properties, finds widespread utilization in various technical applications. Aerospace applications, such as fuselages and steering columns, are well-suited for their utilization. These materials are frequently employed in automotive components, such as steering wheels and fuel tank lids, due to their notable corrosion resistance. The performance of magnesium alloy components remains unimproved by normal manufacturing methods due to the inherent characteristics of the material. This work introduces a contemporary approach to fabricating complex geometries through the utilization of Wire-Electro Discharge Machining (WEDM). The material utilized in this study was magnesium alloy. The investigation also considered the input parameters associated with the Wire Electrical Discharge Machining (WEDM) process, specifically the pulse duration and peak current.
Technical Paper

Investigations on advanced Joining Method for Inconel 718 and SS304 Dissimilar Joints

2022-10-05
2022-28-0345
Modern automobile applications such as petrol, diesel, and gaseous fuel injection system use dissimilar Inconel 718 (IN718) and Stainless Steel 304 (SS 304) joints. IN 718 is a precipitation-hardened austenitic nickel-based superalloy with exceptional qualities such as high strength, resistance to corrosion, greater toughness, as well as resistance to thermal induced fatigue at elevated temperatures (between 150 and 1500oC), while SS 304 is a T 300 Series austenitic stainless steel alloy that can be used successfully in wide range of applications due to greater resistance to corrosion, good high and low temperature strength and ductility with excellent weld ability and formability. To get a better understanding of the mechanical characteristics of these heterogeneous weldments, these alloy joints were created using laser beam welding, one of the most modern joining techniques for high-strength materials.
Technical Paper

Machinability Investigations on Ti-6Al-4V (Grade 5) Wire Electrical Discharge Machining Using Taguchi Method for Auto Parts

2023-11-10
2023-28-0144
Titanium alloys are deemed as one amongst the light weight material most preferably adopted in numerous engineering applications due to its exceptional features such as corrosive resistance and thermal strength. These alloys are predominantly used in components of IC engines such as valves and springs, connecting rods. Especially Ti-Grade 5 adopted in aircraft, automobile parts ski plates and bicycles. The preliminary goal of this present research is to optimize the machining variables for Wire Electrical Discharge Machining (WEDM) of Ti-6Al-4V (Grade 5) to accomplish improved rate of material removal and surface finish. Taguchi’s design and analysis method was chosen for devising and examining the experiments by considering input factors (pulse duration and current). An L9 OA was utilized for experimentation to analyze the various output variables, such as surface finish and material removal rate, using the response analysis of Taguchi.
Technical Paper

Machinability Investigations on Wire Electrical Discharge Machining of Inconel 625 by Taguchi Based Grey Approach

2023-11-10
2023-28-0124
Among the challenging materials used in high-temperature applications is Inconel 625. Due to its low thermal coefficient and greater strength, traditional methods tend to produce poor results when it comes to turning Inconel 625. In order to overcome these issues, a new approach has been proposed that utilizes unconventional techniques. WEDM is a variant of the electrical discharge manufacturing process that is commonly used in the production of complex components. It is mainly utilized for the hard to machine parts. A study on the process parameters of WEDM for the machining of Inconel 625 was performed by utilizing the analysis of Taguchi. The study focused on the various parameters of the process, such as peak current, pulse on time, and off time. The performance measures that were considered in this study included surface roughness and material removal rate. The results of the analysis revealed that the various process variables affected the performance indicators.
Journal Article

Microstructure and Mechanical Behaviour of Dissimilar Laser Welded Joints for Automobile Applications

2022-12-23
2022-28-0548
Over the last decade the utilization of laser sources has seen a marked increase with its reducing expenses and increasing productivity. Enabling technologies such as better process knowledge, better laser sources and systems, and on-going advances in Laser Beam Welding (LBW) processing technologies have all contributed to these accomplishments which include both macro and micro component fabrication through LBW. There are various existing applications that benefit from using challenging materials together, hence integrating dissimilar metals allows us to gain their benefits at a higher level and can be applied extensively for multiple applications. Metals with different mechanical and microstructural qualities and features such as high corrosion resistance and low specific weight are commonly chosen to fabricate dissimilar joints.
Technical Paper

Multiple Regression Analysis for Ti-6Al-4V Wire Electrical Discharge Machining (Grade 5) for Light Weight Automobile Applications

2023-11-10
2023-28-0163
Wire Electrical Discharge Machining (WEDM) is a variant of the electrical discharge machining (EDM) process, which represents an innovative method for the removal of material from a workpiece. The aforementioned process is frequently employed for the machining of harder materials that possess intricate geometries. Titanium alloys are a class of lightweight materials that find extensive utilization in many technical applications. Titanium Grade-5 is a titanium-based alloy that exhibits enhanced mechanical strength and improved resistance to corrosion. The objective of this exploratory analysis is to establish empirical correlations between the selected input variables, namely ‘Pulse on,’ ‘Pulse off,’ and peak current, and the desired output measures, which are material removal rate and surface roughness. The experimental design employed the Taguchi method to effectively organize the combination of tests by considering input factors.
Technical Paper

Optimization of Spark Erosion Machining of Monel 400 Alloy for Automobile Applications

2023-11-10
2023-28-0140
Monel 400, a type of nickel alloy which is adopted in numerous engineering fields, such as high-temperature devices. Owing to its better strength and thermal diffusion, it can be difficult to machine with conventional methods. In order to avoid the disadvantages of conventional methods, various advanced material removal techniques have been developed. One of these is Wire Electro Discharge Machining (WEDM). This process is an evolution of the electrical discharge method. In the process of WEDM, difficult materials with intricate forms are usually machined. In this study, the performance of this method on Monel 400 has been analyzed. The three independent variables that are considered when it comes to analyzing the performance of this process are the pulse on, the applied current, and the pulse off. The experiments were performed using the design approach of Taguchi, which involves using an L27 orthogonal array.
Technical Paper

Preparation of Copper Zinc Tin Sulfide Thin Film Solar Cells by Chemical Synthesis

2023-11-10
2023-28-0139
Cu2ZnSnS4 (CZTS) is a promising quaternary semiconducting absorber layer in thin film heterojunction solar cells. All the elements of this compound semiconductor were abundant, inexpensive, and non-toxic, hence CZTS is an alternative emerging optoelectronic material for Cu(In,Ga)Se2 and CdTe solar cells. Using the traditional spray approach, these films were effectively grown at an ideal substrate temperature of 643 K. The deposited films are found to be a kesterite structure using X-ray diffraction studies. The lattice parameters are calculated from the XRD spectrum and are found to be a = b = 5.44 Å and c = 10.86 Å. The energy band gap and optical absorption coefficient are found to be 1.50 eV and above 104 cm-1 respectively. The material exhibits p-type conductivity. After the chemical spray pyrolysis is completed, the deposited films remain on the hot plate, thus improving the films' crystallinity. A Cu2ZnSnS4 solar cell is fabricated using entirely chemical synthesis methods.
X