Refine Your Search

Topic

Author

Search Results

Technical Paper

3D Simulation Methodology to Predict Passenger Thermal Comfort Inside a Cabin

2021-09-15
2021-28-0132
The vehicle Heating, Ventilation and Air conditioning (HVAC) system is designed to meet both the safety and thermal comfort requirements of the passengers inside the cabin. The thermal comfort requirement, however, is highly subjective and is usually met objectively by carrying out time dependent mapping of parameters like the velocity and temperature at various in-cabin locations. These target parameters are simulated for the vehicle interior for a case of hot soaking and its subsequent cool-down to test the efficacy of the AC system. Typically, AC performance is judged by air temperature at passenger locations, thermal comfort estimation along with time to reach comfortable condition for human. Simulating long transient vehicle cabin for thermal comfort evaluation is computationally expensive and involves complex cabin material modelling.
Journal Article

A Case Study of Reaction Time Reduction of Vehicle Brake System

2011-09-18
2011-01-2379
There has to be a good co-relation/ relationship between the pedal effort applied, pedal travel, deceleration level achieved and stopping distance for “good brake feel”. Brake feel also depend upon the time lag between the force applied on brake pedal and the response of braking system. Hence “brake feel” can be improved by reducing the response time of the brake system. Many vehicles are having “poor brake feel” complaints, pertaining to the above mentioned reasons. This paper relates to an improved brake system for automobile in which reduction in reaction time was done by artificially increasing differential pressure head across vacuum booster diaphragm. Brake booster is given an input of compressed air to the valve body during actuation, thereby increasing the differential pressure across the diaphragm. The compressed air is bled from turbocharger-intercooler of the vehicle which is stored in a reservoir, with one way valve, while cruising.
Technical Paper

A Feedback and Feedforward Control Algorithm for a Manual Transmission Vehicle Simulation Model

2018-04-03
2018-01-1356
Authors were challenged with a task of developing a full vehicle simulation model, with a target to simulate the electrical system performance and perform digital tests like Battery Charge Balance, in addition to the fuel efficiency estimation. A vehicle is a complicated problem or domain to model, due to the complexities of subsystems. Even more difficult task is to have a control algorithm which controls the vehicle model with the required control signals to follow the test specification. Particularly, simulating the control of a vehicle with a manual transmission is complicated due to many associated control signals (Throttle, Brake and Clutch) and interruptions like gear changes. In this paper, the development of a full vehicle model aimed at the assessment of electrical system performance of the vehicle is discussed in brief.
Technical Paper

A Low Cost Euro-III Development Strategy for 4 L Engine for Commercial Vehicle Application

2006-10-16
2006-01-3384
Reduction of NOx (Oxides of Nitrogen) and particulates from engine exhaust is one of the prime considerations in current research and development in automotive industry. The present paper describes the combustion optimization done on a four cylinder, 4 liter DI diesel engine to meet stringent Euro-III emission norms. The engine FIE (Fuel Injection Equipment) and injector geometry was optimized for performance and emission. Smoke measurements were considered as indicative of soot, to predict particulate emissions. This was done to simplify the overall process and save development time. It was concluded that by combining the flexibility of electronically controlled fuel injection begin, with improved nozzle technologies, with higher spray velocities and spray penetration, a considerable reduction in NOx and particulate emissions can be achieved. This can serve as a low cost solution, without any exhaust after-treatment systems.
Technical Paper

A Methodology to Predict Mobile Air-Conditioning System (MAC) Performance for Low GWP Drop-In Refrigerant Using 1D CAE Simulation Tool

2024-01-16
2024-26-0308
In developing nations, most passenger vehicles are equipped with mobile air conditioning (MAC) systems that work on Hydro Fluoro Carbons (HFC) based refrigerants. These refrigerants have a high global warming potential (GWP) and hence adversely affect the environment. According to the Kigali amendment to Montreal Protocol, Article-5 Group-2 countries including India must start phasing down HFCs from 2028 and replace them with low Global Warming Potential (GWP) refrigerants. One such class of low GWP refrigerant is Hydro Fluoro Olefins (HFO) In order to replace HFCs with HFOs in existing MAC systems, the various system performance parameters with the new refrigerant are required to be evaluated. Performance evaluation of MAC system is rendered quicker and cost-effective by deploying a digital simulation tool. There is good correlation and confidence established for MAC performance prediction with HFCs through 1D CAE.
Technical Paper

A Novel Approach for Diagnostics, End of Line and System Performance Checks for Micro Hybrid Battery Management Systems

2014-04-01
2014-01-0291
Micro Hybrid Systems are a premier approach for improving fuel efficiency and reducing emissions, by improving the efficiency of electrical energy generation, storage, distribution and consumption, yet with lower costs associated with development and implementation. However, significant efforts are required while implementing micro hybrid systems, arising out of components like Intelligent Battery Sensor (IBS). IBS provides battery measurements and battery status, and in addition mission critical diagnostic data on a communication line to micro hybrid controller. However, this set of data from IBS is not available instantly after its initialization, as it enters into a lengthy learning phase, where it learns the battery parameters, before it gives the required data on the communication line. This learning period spans from 3 to 8 hours, until the IBS is fully functional and is capable of supporting the system functionalities.
Technical Paper

A Study on Improvements in Side Impact Test vs CAE Structural Correlation

2013-01-09
2013-26-0034
Computer Aided Engineering (CAE) plays an important role in the product development. Now a days major decisions like concept selection and design sign off are taken based on CAE. All the Original Equipment Manufacturers (OEMs) are putting consistent efforts to improve accuracy of the CAE results. In recent years confidence on CAE prediction has been increased mainly because of good correlation of CAE predictions with the test results. Defining proper correlation criteria and using a systematic approach helps significantly in building the overall confidence level for predictions given by CAE simulations. Representation of manufacturing effects on material properties and material failure in the simulation is still a big challenge for achieving a good CAE correlation. This paper describes side impact test vs CAE correlation. The important parameters affecting the CAE correlation were discussed.
Technical Paper

An Engine Stop Start System with Driver Behavior Learning and Adaption for Improving the User Experience

2018-04-03
2018-01-0609
Engine Stop/Start System (ESS) promises to reduce greenhouse emissions and improve fuel economy of vehicles. Previous work of the Authors was concentrated on bridging the gap of improvement in fuel economy promised by ESS under standard laboratory conditions and actual driving conditions. Findings from the practical studies lead to a conclusion that ESS is not so popular among the customers, due to the complexities of the system operation and poor integration of the system design with the driver behavior. In addition, due to various functional safety requirements, and traffic conditions, actual benefits of ESS are reduced. A modified control algorithm was proposed and proven for the local driving conditions in India. The ways in which a given driver behaves on the controls of the vehicles like Clutch and Brake Pedals, Gear Shift Lever were not uniform across the demography of study and varied significantly.
Journal Article

An Intelligent Alternator Control Mechanism for Energy Recuperation and Fuel Efficiency Improvement

2013-04-08
2013-01-1750
With the current state of ever rising fuel prices and unavailability of affordable alternate technologies, significant research and development efforts have been invested in recent times towards improving fuel efficiency of vehicles powered with conventional internal combustion engines. To achieve this, a varied approach has been adopted by researchers to cover the entire energy chain including fuel quality, combustion quality, power generation efficiency, down-sizing, power consumption efficiency, etc. Apart from energy generation, distribution and consumption, another domain that has been subjected to significant scrutiny is energy recuperation or recovery. A moving vehicle and a running engine provide a number of opportunities for useful back-recovery and storage of energy. The most significant sources for recuperation are the kinetic energy of the moving vehicle or running engine and to a lesser extent the thermal energy from medium such as exhaust gas.
Technical Paper

Application of a Pre-Turbocharger Catalyst (PTC) on an Indian Multi Utility Diesel Vehicle for Meeting BS IV

2011-01-19
2011-26-0024
Diesel engines tend to operate on lower exhaust temperatures, compared to their gasoline counterparts. Exhaust emission control becomes a significant issue at these lower temperatures, as any catalytic converter needs certain light off temperature to commence functioning. The trend so far has been to move the catalytic converters closer to the exhaust manifold, in order to get the benefit of higher temperatures - but most of the applications are limited to the location available after the turbo chargers. This is due the fact that very minute and efficient catalyst is required, if it has to be placed before the turbo charger. This catalyst also needs to be extremely durable to take care of high exotherms which occur within the catalysts and also to prevent any possible damage to the turbo chargers.
Technical Paper

Battery Lifetime & Capacity Fade Prediction for Electric Vehicles Using Coupled Electro-Thermal Simulation Methodology

2023-09-14
2023-28-0003
Global concerns over availability and environmental impact of conventional fuels in recent years have resulted in evolution of Electric Vehicles. Research and development focus has shifted towards one of its main components, Lithium-ion battery. Development of high performing, long lasting batteries within challenging timelines is the need of the industry. Lithium-ion batteries undergo “battery ageing”, limiting its energy storage and power output, affecting the EV performance, cost & life span. It is critical to be able to predict the rate of battery ageing & the impact of different environmental conditions on battery lifetime/capacity. Conventionally, extensive physical vehicle level testing is carried out on batteries to map the battery capacity in various conditions. This is a lengthy & expensive process affecting the product development cycle, paving the way for an alternative process.
Technical Paper

Brake Groan Noise Investigation and Optimization Strategies for Passenger Vehicles

2021-09-22
2021-26-0301
Groan is a low frequency noise generated when moderate brake pressure is applied between the surfaces of the brake disc and the brake pad at a low-speed condition. Brake groan is often very intense and can cause large numbers of customer complaints. During a groan noise event, vehicle structure and suspension components are excited by the brake system and result in a violent event that can be heard and felt during brake application. The cause of noise is friction variation of stick-slip phenomenon between friction material and disc. Creep groan is the structure-borne noise that is related to dynamic characteristic of the vehicle. However, it has been mainly improved through friction material modifications in the past. In this paper, transfer path of creep groan noise was analyzed by means TPA and structural countermeasure to creep groan noise was suggested. This paper discusses the approach for prediction and mitigation of brake groan noise for passenger vehicles having disc brakes.
Technical Paper

Challenges to Meet New Noise Regulations and New Noise Limits for M and N Category Vehicles

2013-01-09
2013-26-0107
New noise regulations, with reduced noise limits, have been proposed by UN-ECE. A new method which aims at representing urban driving of the vehicles more closely on roads is proposed and is considerably different from the existing one (IS 3028:1998). It is more complex; we also found that some of the low powered vehicles can not be tested as per this method. The paper proposes ways of improvement in the test method. The new noise reduction policy options will have a considerable impact on compliance of many categories of vehicles. Technological challenges, before the manufacturers, to meet all performance needs of the vehicle along with the cost of development will be critical to meet the new noise limits in the proposed time frame.
Technical Paper

Comparative Analysis of P2 and P3 HEV Architectures for Different Vehicle Segments

2024-01-16
2024-26-0284
Climate change due to global warming calls for more fuel-efficient technologies. Parallel Full hybrids are one of the promising technologies to curb the climate change by reducing CO2 emissions significantly. Different parallel hybrid electric vehicle (HEV) architectures such as P0, P1, P2, P3 and P4 are adopted based on different parameters like fuel economy, drivability, performance, packaging, comfort and total cost of ownership of the vehicle. It is a great challenge to select right hybrid architecture for different vehicle segments. This paper compares P2 and P3 HEV with AMT transmission to evaluate most optimized architecture based on vehicle segment. Vehicles selected for study are from popular vehicle segments in India with AMT transmission i.e. Entry segment hatch and Compact SUV. HEV P2 and P3 architectures are simulated and studied with different vehicle segments for fuel economy, performance, drivability and TCO.
Technical Paper

Design Methods to Optimize the Performance of Controller Area Networks

2012-04-16
2012-01-0194
This literature is in the field of communication networks where different Electronic Control Units (ECUs) communicate with each other over Controller Area Network (CAN) protocol. Typically these types of CAN networks are widely used in automotive vehicles, plant automations, etc. This proposed method is applicable in all such applications where controller area network is used as backbone electrical architecture. This literature proposes a new method of CAN signal packing into CAN frames so that network bus-load is minimized so that more number of CAN signals can be packed and more number of ECUs can be accommodated within a CAN network. The proposed method also ensures that the age of each CAN signal is minimized and all CAN signals reach the intended receiving ECUs within their maximum allowed age. Typically network designers are forced to design and develop multiple sub-networks and network gateways to get rid of network bus-load.
Technical Paper

Development & Calibration of a Rain-Light Sensor and Controller for Indian Market

2010-04-12
2010-01-0296
Modern vehicles complexity is increasing to meet the demands of user. Automatic wiper and headlamp activation system using rain light sensor, (RLS) is one of the popular customer requirement. RLS is a combination of an infrared rain sensor and an optical light sensor. The RLS and controller operate the front wiper once it detects rain droplets on the windscreen. It switches on the headlamps automatically when while vehicles enter in to the tunnel. During integration of a rain light sensor on a vehicle the following should be considered: customer usage pattern, environmental factors, light intensity, raining pattern and vehicle architecture limitations. This paper illustrates the methodology used calibrated a pre-developed rain light sensor for specific markets like India.
Technical Paper

Development of Accelerated Life Test Schedule for Rig Testing of Live Axles Based on Road Load Data and Its Correlation with Field

2018-04-03
2018-01-0099
Drive components of live axle undergoes different loading conditions during field usage depending upon terrain conditions, vehicle loading and traffic conditions etc. During vehicle running, drive components of axle experiences variable torque levels, which results in the fatigue damage of the components. Testing of these drive components of axle on test rig for endurance life is an imperative part of axle development, owing to limitations of vehicle testing because of time and cost involved. Similarly, correlating field failures with rig testing is equally critical. In such situation, if a test cycle is derived correlating the field usage, rig testing can be effectively used for accelerated life testing and reliability prediction of these components. An approach is presented in the paper wherein test cycle is derived based on the data collected on vehicle in the field under service road and loading conditions.
Technical Paper

Development of Exhaust Silencer for Improved Sound Quality and Optimum Back Pressure

2010-04-12
2010-01-0388
For an automotive exhaust system, noise level and back pressure are the most important parameters for passenger comfort and engine performance respectively. The sound quality perception of the existing silencer design was unacceptable, although the back pressure measured was below the target limit. To improve the existing design, few concepts were prepared by changing the internal elements of silencer only. The design constraints were the silencer shell dimensions, volume of silencer, inlet pipe and outlet tailpipe positions, which had to be kept same as that of the existing base design. The sound quality signal replaying and synthesizing was performed to define the desired sound quality. The numerical simulation involves 3D computational fluid dynamics (CFD) with appropriate boundary condition having less numerical diffusions to predict the back pressure. The various silencer concepts developed with this preliminary analysis, was then experimentally verified with the numerical data.
Technical Paper

Development of IT Enabled System for Data Management to Meet EU Vehicle Recyclability Directives

2010-04-12
2010-01-0276
EU directive 2005/64/EC on type approval of motor vehicles with respect to their Reusability, Recyclability and Recoverability ( RRR ) requires vehicle manufacturers to put in place the necessary arrangements and procedures for Parts, Materials and Weight (PMW ) data collection from full chain of supply. This is required to perform the calculations of recyclability rate and recoverability rate in line with ISO 22628. Commonly practiced data collection methodologies included spreadsheet and use of internationally available IT support system for collection of material data. Data complexity and prohibitive cost for using Internationally available IT Support systems like IMDS (International Material Data System) has led to the in-house development of IT enabled Solution customizing Siemens PLM software product (Team centre Enterprise) and SAP (SRM suite).
Technical Paper

Dynamic Stress-Strain and Fatigue Life Estimation Using Limited Set of Measured Accelerometer Data on Exhaust System Using System Equivalent Reduction and Expansion Process (SEREP)

2024-01-16
2024-26-0251
The dynamic response of structures to operating or occasional loads is crucial for design considerations, as it directly impacts the cumulative fatigue life. In practice, accurately discerning the precise loads and structural conditions, which involve considerations such as boundary conditions, geometry, and mechanical properties, can be quite challenging. Significant efforts are invested in identifying these factors and developing suitable prediction models. Nonetheless, the estimated forces and boundary conditions remain approximations, leading to uncertainties which affects the overall predictions and the analysis of how stress and strain develop in the structure during subsequent evaluations. Many researchers frequently employ a method where they estimate the forces acting on the system based on measurement data obtained at limited number of locations over the structure.
X