Refine Your Search

Topic

Author

Search Results

Viewing 1 to 20 of 20
Technical Paper

A New 4-Bit Microcomputer with Highly Reliable Architecture for Peripheral Circuits of ECU

1990-09-01
901708
Electronic Control Units (ECUs) for automobiles are usually composed of a main single-chip microcomputer and peripheral circuits with some standard and/or custom ICs. The peripheral circuits vary with the kinds of control or models of automobiles. When the peripheral circuits are replaced with a single-chip microcomputer, the ECU becomes compact and low in cost. This is because the ECU is constructed with only two LSIs and can be used for various kinds of control and various models of automobiles only by changing the program of the microcomputer. The microcomputer, however, requires many I/O functions and high reliability. We have developed a new 4-bit microcomputer suitable for these requirements. The new microcomputer has two remarkable features. One is powerful I/O functions such as high speed I/O, serial I/O, parallel I/O, analog I/O, and default output that is generated in place of the calculated output by the main CPU when it fails.
Technical Paper

Application of Models of Short Circuits and Blow-Outs of Spark Channels under High-Velocity Flow Conditions to Spark Ignition Simulation

2018-09-10
2018-01-1727
This report describes the implementation of the spark channel short circuit and blow-out submodels, which were described in the previous report, into a spark ignition model. The spark channel which is modeled by a particle series is elongated by moving individual spark particles along local gas flows. The equation of the spark channel resistance developed by Kim et al. is modified in order to describe the behavior of the current and the voltage in high flow velocity conditions and implemented into the electrical circuit model of the electrical inductive system of the spark plug. Input parameters of the circuit model are the following: initial discharge energy, inductance, internal resistance and capacitance of the spark plug, and the spark channel length obtained by the spark channel model. The instantaneous discharge current and the voltage are obtained as outputs of the circuit model.
Technical Paper

Critical Analysis of PM Index and Other Fuel Indices: Impact of Gasoline Fuel Volatility and Chemical Composition

2018-09-10
2018-01-1741
Among the challenges for the future facing the development of gasoline engines, one of the most important is the reduction of particles emissions. This study proposes a critical and objective evaluation of the influence of fuel characteristics on gasoline particles emission through the use of Fuel Particle Indices. For this, a selected fuel matrix composed of 22 fuels was built presenting different volatility and chemical composition (content in total aromatics, heavy cuts and ethanol). To represent the fuel sooting tendency, seven Fuel Particle Indices were selected based on a literature review, namely, Particulate Matter Index (PMI), Particulate Number index (PNI), Threshold Sooting index (TSI), Smoke point (SP), Oxygen Extended Sooting Index (OESI), Simplified index 1 and 2 (sPMI 1, sPMI 2). These indices were computed on the fuel matrix and compared on the basis of three main axes. First, the sensitivity to fuel variation.
Technical Paper

Development of Anti-Plug Fouling Ignition System

1992-02-01
920575
The new generation engines currently being developed tend to require cold type spark plugs, which are prone to fouling. This paper describes the development of a new Coil on Plug ignition system that resolves this problem by using the high energy and the fast secondary voltage rise time of a capacitive ignition while maintaining inductive ignition characteristics for good ignitability. To evaluate the effectiveness of the system, spark plug insulation resistance was monitored and cold tests were conducted. The results demonstrated that the new ignition system is remarkably effective: insulation resistance remains high and startability and driveability are unaffected under conditions normally leading to excessive misfires and failure to start with a conventional inductive system. To satisfy environmental concerns, automobile manufactures are increasingly turning to high compression ratio engines in view of their improved performance.
Journal Article

Development of Fuel Cell (FC) System for New Generation FC Bus

2019-04-02
2019-01-0372
Toyota Motor Corporation has been actively pursuing the development of fuel cell vehicles (FCVs) to respond to global environmental concerns and demands for clean energy. Toyota developed the first fuel cell (FC) bus to receive vehicle type certification in Japan. Subsequently, a new FC bus has been developed, which adopts two FC systems and four high-voltage batteries to achieve the required high power performance and durability. For enhanced durability, the FC system is controlled to maximize usage of the high-voltage batteries and to reduce the number of electric potential changes of the fuel cell. To accomplish this, the voltage of the FC stack must be kept high and FC power must be kept low. The high-voltage batteries were used to actively minimize FC power during acceleration.
Technical Paper

Development of Methanol Lean Burn System

1986-03-01
860247
A methanol fueled, lean burn system has been developed to improve both specific fuel consumption and NOx emissions. A 1.6L four-cylinder engine with increased compression ratio has been used to develop this system. Three major components of the Toyota Lean Combustion System (T-LCS) have been applied: (1) A helical port with a swirl control valve (2) A lean mixture sensor (3) Timed, multi-point fuel injection. A 2250 lb. Inertia Weight test vehicle has been fitted with this engine, and fuel system materials have been modified. This methanol, lean burn system has improved the fuel economy by about 12% still satisfying the 1986 emission standards of the U.S.A. and Japan. Aldehyde emissions have also been evaluated.
Technical Paper

Development of Multiplex Wiring System with Optical Data Link for Automobiles

1984-02-01
840492
This paper contains an explanation of a Multiplex Wiring System with Optical Data-Link for cars, which has been installed in the Toyota “Century” since 1982. In this system, a total of 64 signals related to door wiring are transmitted in a multiplex fashion, and the number of wires from the front right-hand door to the interior could be reduced from 46 wires, which were used with conventional wiring techniques, to 10 wires including 2 plastic optical fibers. This system also has various control functions which includes a door-lock control function. In order to give high reliability to this system, we have developed a new optical data-link as well as a new custom micro-computer. And in the automobile industry, such a large scale multiplex wiring system having high reliability is very innovative in our opinion and will surely have a large impact in the future.
Technical Paper

Development of the Second Generation Methanol Lean Burn System

1989-09-01
892060
The second generation methanol lean burn system has been developed. The power unit is a new, 4 valve 1.6L in-line four with compact combustion chambers. Lean misfire limit was extended by using a swirl control valve in the intake port which improves combustion under partial load. Lean mixture control is made by using a signal from lean mixture sensor provided in the exhaust manifold. An EGR system has been newly adopted to reduce NOx emissions and a under-floor type catalyst is also used to reduce formaldehyde emission in the cold transient mode in addition to the manifold type catalyst. Permissible excess air ratio range (PEXARR) was defined and used to indicate the potential for reducing vehicle NOx emissions in engine dynamometer tests to optimize compression ratio, valve timing and swirl ratio and to evaluate the effect of the EGR.
Technical Paper

Effects of Methanol/Gasoline Blends on Hot Weather Driveability

1987-02-01
870368
The effects of methanol/cosolvent/gasoline blends on hot weather driveability are surveyed. Results show that startability after engine-off soak drastically deteriorates in an EFI vehicle. By observing the behavior of the fuel in the delivery pipe during hot-start testing and the injected fuel spray shape at high fuel temperature, the authors confirmed that the main cause of this malfunction was the vapor lock in the injector nozzle. The relationship between hot weather driveability and fuel properties is discussed. The gasoline volatility expression commonly used to indicate deterioration in hot weather driveability was found to underestimate the increase in volatility of blended fuels at higher temperatures. A suggestion is made for a modification to the expression to include the effects of methanol blending on volatility characteristics at high temperatures so that EFI vehicle hot-startability may be predicted.
Journal Article

High Concentration Ethanol Effect on SI Engine Emission

2010-04-12
2010-01-1268
From the energy security and CO2 reduction point of view, much attention has been paid to the usage of bio-fuel. Recently, highly concentrated ethanol is used in some areas (“E85”; 85% ethanol and 15% gasoline in North America and Sweden, and “ethanol”; 93% ethanol and 7% water in Brazil). In these regions, Flexible Fuel Vehicles FFVs are being introduced that are capable of using fuels with a wide range of ethanol concentrations. Advantages of highly concentrated ethanol in internal combustion engine applications are higher thermal efficiency obtained due to higher octane number, and a reduction of nitrogen oxides due to lower combustion temperatures On the other hand, the latent heat of vaporization for ethanol is greater than gasoline, causing poor cold startability and high NMOG emissions. This paper examines the effect of highly concentrated ethanol on exhaust emissions at cold start in a SI- engine.
Technical Paper

Improvements to Premixed Diesel Combustion with Ignition Inhibitor Effects of Premixed Ethanol by Intake Port Injection

2010-04-12
2010-01-0866
Premixed diesel combustion modes including low temperature combustion and MK combustion are expected to realize smokeless and low NOx emissions. As ignition must be delayed until after the end of fuel injection to establish these combustion modes, methods for active ignition control are being actively pursued. It is reported that alcohols including methanol and ethanol strongly inhibit low temperature oxidation in HCCI combustion offering the possibility to control ignition with alcohol induction. In this research improvement of diesel combustion and emissions by ethanol intake port injection for the promotion of premixing of the in-cylinder injected diesel fuel, and by increased EGR for the reduction of combustion temperature.
Technical Paper

Investigations of the impact of 10% ethanol blended fuels on performances of sold gasoline vehicles in the Japanese market already on the road in Japan

2011-08-30
2011-01-1987
The study of 10% ethanol blended gasoline (E10 gasoline) utilization has been conducted in the Japan Auto-Oil Program (JATOP). In order to clarify the impact of E10 gasoline on vehicle performances, exhaust emissions, evaporative emissions, driveability and material compatibility have been investigated by using domestic gasoline vehicles including mini motor vehicles which are particular to Japan. The test results reveal that E10 gasoline has no impact on exhaust emissions, engine startup time and acceleration period under the hot start condition, but a slight deterioration is observed in some test cases under the cold start condition using E10 gasolines with 50% distillation temperature (T50) level set to the upper limit of Japanese Industrial Standards (JIS) K 2202. Regarding evaporative emissions, the tested vehicles shows no remarkable increase in the hot soak loss (HSL), diurnal breathing loss (DBL) and running loss (RL) testing with E10 gasolines.
Technical Paper

Mechanism of Intake Valve Deposit Formation Part III: Effects of Gasoline Quality

1992-10-01
922265
Quality control of gasoline constituents and its effect on the Intake Valve Deposits (IVD) has become a recent issue. In this paper, the effects of gasoline and oil quality on intake valve deposits were investigated using an Intake Valve Deposit Test Bench and a Sludge Simulator. The deposit formation from the gasoline maximized at an intake valve temperature of approximately 160 °C, and the deposits formed from the engine oil were maximum at approximately 250 °C. Therefore, the contribution of the gasoline or the engine oil appears to depend on the engine conditions. The gasoline which contains MTBE or ethanol with no detergent additive slightly increases the deposition amount. The gasoline with a superior detergent significantly decreases the deposition amount even when MTBE or ethanol is blended in the gasoline. Appropriate detergent fuel additive retards the oil deterioration.
Journal Article

Onboard Gasoline Separation for Improved Vehicle Efficiency

2014-04-01
2014-01-1200
ExxonMobil, Corning and Toyota have collaborated on an Onboard Separation System (OBS) to improve gasoline engine efficiency and performance. OBS is a membrane based process that separates gasoline into higher and lower octane fractions, allowing optimal use of fuel components based on engine requirements. The novel polymer-ceramic composite monolith membrane has been demonstrated to be stable to E10 gasoline, while typically providing 20% yield of ∼100 RON product when using RUL 92 RON gasoline. The OBS system makes use of wasted exhaust energy to effect the fuel separation and provides a simple and reliable means for managing the separated fuels that has been demonstrated using several generations of dual fuel test vehicles. Potential applications include downsizing to increase fuel economy by ∼10% while maintaining performance, and with turbocharging to improve knock resistance.
Technical Paper

Plate Type Methanol Steam Reformer Using New Catalytic Combustion for a Fuel Cell

2002-03-04
2002-01-0406
Methanol steam reforming, which is an endothermic reaction, needs some heating. Both methanol conversion ratio and carbon monoxide (CO) concentration increase when temperature is elevated. As CO poisons a typical polymer electrolyte of a fuel cell, the relationship between methanol conversion ratio and CO concentration is a trade-off one. It was found from preliminary researches that the reforming reaction speed is controlled by heat transfer rate at large methanol flow rate, where methanol conversion ratio becomes lower and CO concentration becomes higher. Therefore it is necessary to develop a new methanol reforming concept that provides stable combustion for heating and enhanced heat transfer for improving the trade-off relationship and making a compact reformer. Reforming catalyst using metal honeycomb support and a new catalytic combustion were applied to a new concept plate type methanol steam reformer, which is used in a fuel cell of 3 kW-class electric generation.
Technical Paper

Spark Plug Fouling: Behavior and Countermeasure

1992-09-01
922093
The higher compression ratio engines, two-stroke engines and flexible fuel vehicles currently under development tend to face the problems of spark plug fouling owing to the necessity of using cold type spark plugs. This paper analyzes the sparking of fouled spark plugs and investigates the characteristics required of an ignition system in order to avoid fouling problems. The results clearly establish that to maintain a strong spark even when the plug is fouled, a high voltage should be instantaneously applied to the spark plug. A series-gap on the high-tension side was confirmed to be an effective means of achieving this and a new plug cap provided with a series-gap has resolved fouling problems such as failure to start. Lately, fuel economy and long-term energy conservation have become critically important. For automobiles, higher compression ratio engines, two-stroke engines and flexible fuel vehicles (FFVs) are being developed.
Technical Paper

Study of Ignition System for Demand Voltage Reduction

2015-04-14
2015-01-0777
Improving the engine efficiency to respond to climate change and energy security issues is strongly required. In order to improve the engine efficiency, lower fuel consumption, and enhance engine performance, OEMs have been developing high compression ratio engines and downsized turbocharged engines. However, higher compression ratio and turbocharging cause cylinder pressure to increase, which in turn increases the demand voltage for ignition. To reduce the demand voltage, a new ignition system is developed that uses a high voltage Zener diode to maintain a constant output voltage. Maintaining a constant voltage higher than the static breakdown voltage helps limit the amount of overshoot produced during the spark event. This allows discharge to occur at a lower demand voltage than with conventional spark ignition systems. The results show that the maximum reduction in demand voltage is 3.5 kV when the engine is operated at 2800 rpm and 2.6 MPa break mean effective pressure.
Technical Paper

System Architecture Design Suitable for Automated Driving Vehicle: Hardware Configuration and Software Architecture Design

2021-04-06
2021-01-0073
Our L2-automated driving system enabling a driver to take his/her hands off from the steering wheel is self-operating on a highway, allowing the vehicle to automatically change lanes and overtake slow-speed leading vehicles. It includes an OTA function, which can extend the ODD after the market launch. To realize these features in reasonably safer and more reliable ways, system architecture must be designed well under hardware and software implementation constraints. One such major constraint is the system must be designed to make the most out of the existing sensor configuration on the vehicle, where five peripheral radars and a front camera for ADAS as well as panoramic-view and rear-view cameras for monitoring are available. In addition, four LiDARs and a telephoto camera are newly adopted for ADS. Another constraint is the system must consist of reliable redundant components for fail-safe operation.
Technical Paper

Three-Way Catalytic Reaction in an Electric Field for Exhaust Emission Control Application

2021-04-06
2021-01-0573
To prevent global warming, further reductions in carbon dioxide are required. It is therefore important to promote the spread of electric vehicles powered by internal combustion engines and electric vehicles without internal combustion engines. As a result, emissions from hybrid electric vehicles equipped with internal combustion engines should be further reduced. Interest in catalytic reactions in an electric field with a higher catalytic activity compared to conventional catalysts has increased because this technology consumes less energy than other electrical heating devices. This study was therefore undertaken to apply a catalytic reaction in an electric field to an exhaust emission control. First, the original experimental equipment was built with a high voltage system used to conduct catalytic activity tests.
Technical Paper

Wear Mechanisms of Methanol Fueled Engine

1985-11-11
852199
The wear mechanisms of the methanol engine were studied using dynamometer tests. Formic acid from methanol combustion mixes with the lubricant oil and attacks the metal surfaces. The iso tacho prorissis method was successfully applied to analyze the formic acid content of the used oil. A large amount of condensed water is also formed by methanol combustion and accelerates the wear. Wear can be effectively reduced by shortening lubricant oil change intervals, by using a special oil and by durable surface treatment of engine parts.
X