Refine Your Search

Search Results

Viewing 1 to 12 of 12
Technical Paper

An Experimental Investigation into the Characteristics of a Fast-Response Flame Ionization Detector for In-Cylinder Sampling

1999-10-25
1999-01-3538
The Cambustion fast-response flame ionization detector (FFID) has been successfully used for instantaneous exhaust port hydrocarbon (HC) concentration measurement in IC engines for a decade. Measurements of in-cylinder HC concentration have also been made, but these present greater challenge. As the sample transit time and the time constant of the system always change when the sampling pressure is changed, it is necessary to investigate the characteristics of the system before it was used for in-cylinder sampling. A unique method was designed to study the influence of the diameter and length of the transfer sample line and the operating parameters of the FFID on the transit time and time constant. A database of transit time and time constant was built up for different simulated in-cylinder pressures. The database can be used for correcting eventual in-cylinder HC concentration measurement.
Technical Paper

Bluff-Body Stabilized Glow Plug Ignition of a Methanol-Fueled IDI Diesel Engine

1993-03-01
930935
Methanol, in common with other alternative fuels including natural gas and LPG, has autoignition characteristics which are poorly suited for use in compression ignition engines. Some sort of ignition assist has proven to be necessary. Considerable work has been carried out with hot surface (glow plug) ignition. The geometric relationship between the fuel injection nozzle and the glow plug is critical to achieving high efficiency and low emissions. Moreover, it is difficult to establish a single geometry which provides reliable ignition and stable operation over the entire range of engine speeds and loads. The work described in this paper investigated extending the range of operation of a particular glow plug/fuel injection nozzle geometry by placing the glow plug in the wake of a bluff body. Bluff-body flame stabilization is a well-known technique in continuous combustors. Experiments were carried out in a single-cylinder CFR cetane rating engine fueled with methanol.
Technical Paper

Effect of Closed Loop Fuel Control System Characteristics on Emissions from a Natural Gas-Fueled Engine

1993-10-01
932747
Some current aftermarket natural gas closed loop carburetion systems use an integral control strategy to maintain a fuel-air equivalence ratio centered in the peak conversion window of a three-way catalytic converter. Fuel control system performance under steady-state engine operating conditions can be characterized by the time-averaged value of the fuel-air equivalence ratio, the rich and lean excursion limits, and a skewness parameter that represents the non-symmetry of the time varying fuel-air equivalence ratio about the control value (ϕaverage). Using a representative aftermarket feedback control system, the effect of these parameters on the exhaust emissions of a natural-gas fueled four-cylinder engine has been investigated. In addition, the effect of EGO sensor characteristics on control system performance has been examined.
Technical Paper

Effect of Engine Operating Variables and Piston and Ring Parameters on Crevice Hydrocarbon Emissions

1994-03-01
940480
A study was performed to determine the effects of engine operating variables and piston and ring parameters on the crevice hydrocarbon emissions from a spark-ignition engine. Natural gas was used as the test fuel in an effort to isolate crevice mechanisms as the only major source of unburned hydrocarbons in the test engine's exhaust. The largest of the in-cylinder crevices, the piston ring pack crevices, were modified, both in size and accessibility, by altering the piston top land height and the number of piston rings and their end gaps. Each piston and ring configuration was subjected to a series of test sweeps of engine operating variables known to affect exhaust hydrocarbon emissions. None of the physical crevice modifications had any significant effect on the level of the exhaust hydrocarbon emissions, although the cycle-to-cycle repeatability of these emissions, measured with a fast hydrocarbon analyzer, was found to vary between the different configurations.
Technical Paper

Effect of Increasing Compression Ratio in a Light-Duty Natural Gas-Fueled Engine on Efficiency and Emissions

1993-10-01
932746
As a result of CAFE (corporate average fuel economy) requirements, the trend in passenger car engine design is to smaller displacement engines of higher specific output which provide reductions in vehicle driving cycle fuel consumption without an accompanying decrease in maximum power output. Design features such as four valves per cylinder and compact combustion chambers give these engines significantly different combustion characteristics than traditional pushrod OHV (overhead valve) engines. In general, their combustion chambers are fast burning, enabling the use of higher compression ratios without knock on unleaded gasoline. Since fuel consumption decreases with increasing compression ratio, and since natural gas has a substantially higher octane rating than the best unleaded gasoline, it would appear to be desirable to operate with even higher compression ratios in a dedicated natural gas engine.
Technical Paper

Engine Operating Parameter Effects on the Speciated Aldehyde and Ketone Emissions from a Natural Gas Fuelled Engine

1995-10-01
952500
Measurements were taken of the speciated aldehyde and ketone exhaust emissions from a modern four-cylinder engine fuelled with natural gas. The effect on these emissions of varying the engine operating parameters spark timing, exhaust gas recirculation rate, engine speed, and fuel/air equivalence ratio was examined. The influence of these operating parameters on the complete reactivity-weighted emissions with natural gas fuelling is predicted. With stoichiometric fuel/air mixtures, both the total hydrocarbons and formaldehyde emissions declined with increasing exhaust gas temperature and increasing in-cylinder residence time, suggesting that formaldehyde burn-up in the exhaust process largely controls its emissions levels. Closer examination of the aldehyde emissions shows they follow trends more like those of the non-fuel, intermediate hydrocarbon species ethane and acetylene, than like the trends of the fuel components methane and ethane.
Technical Paper

Examination of Charge Dilution with EGR to Reduce NOx Emissions from a Natural Gas-Fuelled 16 Valve DOHC Four-Cylinder Engine

1994-10-01
942006
Charge dilution is commonly used to reduce emissions of nitrogen oxides (NOx) from internal combustion engine exhaust gas. The question of whether to use air or exhaust gas recirculation (EGR) as a charge diluent for the natural gas-fuelled test engine is addressed first. The decision to use EGR is based on the potentially lower NOx and unburned hydrocarbon emissions that could be achieved if a three-way catalyst were applied to the engine. The effect of EGR on the spark advance for maximum brake torque (MBT), NOx, and unburned hydrocarbon emissions is then examined in detail. The effect on fuel efficiency is discussed briefly.
Technical Paper

Exhaust Emission and Energy Consumption Effects from Hydrogen Supplementation of Natural Gas

1995-10-01
952497
An experiment was conducted to evaluate the efficiency and emissions of an engine fuelled with a mixture of natural gas and approximately 15% hydrogen by volume. This mixture, called Hythane™, was compared with natural gas fuel using engine efficiency and engine-out emissions at various engine operating conditions as the basis of comparison. Throughout most of the experiment, fuel mixtures were slightly rich of stoichiometry. It was found that at low engine loads, using the same spark timing, engine efficiency increased under HythaneTM fuelling but at higher engine loads, natural gas and Hythane™ had the same efficiency. At low engine speed and load conditions with the same spark timing, engine-out total hydrocarbon (THC) emissions were lower for Hythane™ fuelling. When compared on a carbon specific basis, however, natural gas hydrocarbon emissions were lower. At some test conditions, engine-out carbon monoxide (CO) emissions were lower under Hythane™.
Technical Paper

Fuel Effects on Particulate Matter Emissions Variability from a Gasoline Direct Injection Engine

2018-04-03
2018-01-0355
Particulate matter emissions from gasoline direct injection engines are a concern due to the health effects associated with ultrafine particles. This experimental study investigated sources of particulate matter emissions variability observed in previous tests and also examined the effect of ethanol content in gasoline on particle number (PN) concentrations and particle mass (PM) emissions. FTIR measurements of gas phase hydrocarbon emissions provided evidence that changes in fuel composition were responsible for the variability. Exhaust emissions of toluene and ethanol correlated positively with emitted PN concentrations, while emissions of isobutylene correlated negatively. Exhaust emissions of toluene and isobutylene were interpreted as markers of gasoline aromatic content and gasoline volatility respectively.
Technical Paper

Instantaneous In-Cylinder Hydrocarbon Concentration Measurement during the Post-Flame Period in an SI Engine

1999-10-25
1999-01-3577
Crevices in the combustion chamber are the main source of hydrocarbon (HC) emissions from spark ignition (SI) engines fuelled by natural gas (NG). Instantaneous in-cylinder and engine exhaust port HC concentrations were measured simultaneously using a Cambustion HFR400 fast response flame ionization detector (FRFID) concentrated on the post-flame period. The raw data was reconstructed to account for variation in the FFRID sample transit time and time constant due to fluctuating in-cylinder pressure. HC concentration development during the post-flame period is discussed. Comparison is made of the post-flame in-cylinder and exhaust port HC concentrations under different engine operating conditions, which gives a better understanding of the mechanism by which HC emissions form from crevices in SI engines.
Technical Paper

Operating Parameter Effects on the Speciated Hydrocarbon Emissions from a Natural Gas Fueled Engine

1994-10-01
942007
The effects of engine operating parameters on the speciated engine-out hydrocarbon emissions from a natural gas fueled spark ignition 16 valve four-cylinder engine were examined. Total hydrocarbon emissions were dominated by methane, the main component of natural gas. The non-methane hydrocarbons consisted primarily of ethane, ethene, and acetylene. Except for changes in the fuel-air equivalence ratio rich of the stoichiometric condition, emissions of unsaturated species were found to be less sensitive to engine operating parameters than were the fuel components. A single species, ethene, dominated the engine-out hydrocarbon reactivity, accounting for over 80% of the NMHC reactivity.
Technical Paper

The Effect of Oxygenated Additives on Soot Precursor Formation in a Counterflow Diffusion Flame

1999-10-25
1999-01-3589
A counter–flow propane/air diffusion flame (ϕ= 1.79) is used for a fundamental analysis of the effects of oxygenated additives on soot precursor formation. Experiments are conducted at atmospheric pressure using Gas Chromatography for gas sample analysis. The oxygenated additives dimethyl carbonate (DMC) and ethanol are added to the fuel keeping the total volumetric fuel flow rate constant. Results show 10 vol% DMC significantly reduces acetylene, benzene, and other flame pyrolysis products. Ethanol (10 vol%) shows, instead, more modest reductions. Peak acetylene and benzene levels decrease as the additive dosage increases for both DMC and ethanol. The additive's effect on the adiabatic flame temperature and the fuel stream carbon content does not correlate significantly with acetylene levels. However, there does appear to be a linear relationship between acetylene concentrations and both the additive's oxygen and C–C bond content.
X