Refine Your Search

Topic

Search Results

Technical Paper

A Vehicle Dimensions Dynamic Detection Method Based on Image Recognition

2021-04-06
2021-01-0167
The acquisition of vehicle dimensions in a vehicle’s moving process has a wide application in road monitoring, transportation, vehicle model recognition and non-contact overload recognition. At present, the detection of the vehicle dimensions mostly adopts the methods of human visual inspection and tool detection, which has a low detection efficiency and difficult to replicate on a large scale. Based on the image background subtraction method, this paper proposes a vehicle dimensions detection method, which can realize real-time detection of road vehicle dimensions. This method uses an adaptive Gaussian Mixture Model (GMM) to establish a background model based on the video stream. Initially, the moving target image is obtained by the background subtraction method, and then the edge detection under the Canny operator and Hough transform circle detection are performed on the image to obtain the pixel dimension of the vehicle's outline.
Technical Paper

An Image Recognition Application Method for Vertical Movement of Vehicles

2020-04-14
2020-01-0733
In ITS, image processing technology is applied to a wide variety of areas such as visual-based intelligent vehicle navigation, visual-based traffic monitoring and visual-based traffic management. In the recognition system of the vehicle body characteristics, most of the recognition is the license plate and the car emblem, etc. This paper proposes an image recognition application method for the vertical motion of the car while driving, mainly including vertical height detection and vertical displacement velocity acceleration recognition. The edge detection model of the image object is established by using the gray image to obtain the car motion segmentation image. At the same time, an image length and actual length coordinate conversion model is established, which can calculate an arbitrary actual length of the image object. In this paper, Yuejin Shangjun X500 van was selected as the test vehicle, and the video data was captured with a camera.
Technical Paper

Anti-Skid System for Ice-Snow Curve Road Surface Based on Visual Recognition and Vehicle Dynamics

2023-04-11
2023-01-0058
Preventing skidding is essential for studying the safety of driving in curves. However, the adhesion of the vehicle during the driving process on the wet and slippery road will be significantly reduced, resulting in lateral slippage due to the low adhesion coefficient of the road surface, the speed exceeding the turning critical, and the turning radius being too small when passing through the corner. Therefore, to reduce the incidence of traffic accidents of passenger cars driving in curves on rainy and snowy days and achieve the purpose of planning safe driving speed, this paper proposes a curve active safety system based on a deep learning algorithm and vehicle dynamics model. First,we a convolutional neural network (CNN) model is constructed to extract and judge the characteristics of snow and ice adhesion on roads.
Technical Paper

Body Load Identification for BEV Based on Power Spectrum Decomposition under Road Excitation

2014-06-30
2014-01-2044
As motor assembly of Battery Electric Vehicle (BEV) replaces engine system of Internal Combustion Engine (ICE) vehicle, interior structure-borne noise induced by road random excitation becomes more prominent under middle and high speed. The research is focused on central driving type BEV. In order to improve interior noise in middle and low frequency range, dynamic load of BEV body must be identified. Consequently the structural noise induced by road excitation is conducted. The limitations of common identification method for dynamic body load are analyzed. The applied several identification methods are proposed for deterministic dynamic load such as engine or motor. Random dynamic load generated by road excitation is different from deterministic dynamic load. The deterministic load identification method cannot be applied to the random load directly. An identification method of dynamic body load for BEV is presented based on power spectrum decomposition.
Technical Paper

Characterization Spray and Combustion Processes of Acetone-Butanol-Ethanol (ABE) in a Constant Volume Chamber

2015-04-14
2015-01-0919
Recent research has shown that butanol, instead of ethanol, has the potential of introducing a more suitable blend in diesel engines. This is because butanol has properties similar to current transportation fuels in comparison to ethanol. However, the main downside is the high cost of the butanol production process. Acetone-butanol-ethanol (ABE) is an intermediate product of the fermentation process of butanol production. By eliminating the separation and purification processes, using ABE directly in diesel blends has the potential of greatly decreasing the overall cost for fuel production. This could lead to a vast commercial use of ABE-diesel blends on the market. Much research has been done in the past five years concerning spray and combustion processes of both neat ABE and ABE-diesel mixtures. Additionally, different compositions of ABE mixtures had been characterized with a similar experimental approach.
Technical Paper

Collision Avoidance Strategy of High-Speed AEB System Based on Minimum Safety Distance

2021-04-06
2021-01-0335
The automatic emergency braking (AEB) system is an important part of automobile active safety, which can effectively reduce rear-end collision accidents and protect drivers' safety through active braking. AEB system has been included in many countries' new car assessment programme as the test content of active safety. In view of obviously deficiencies of the existing AEB control algorithm in avoiding longitudinal collision at high speed, it is proposed to an optimized model of the minimum safe distance for rear-end collision prevention on high-speed road in order to improve the accuracy of AEB system. Considering the influence of road adhesion coefficient and human comfort on the maximum braking deceleration, it is established to a more accurate and reasonable AEB system to avoid collision for expressway. The collision avoidance strategy is verified by simulation software.
Technical Paper

Color Variable Speed Limit Sign Visibility for the Freeway Exit Driving Safety

2017-03-28
2017-01-0085
Typical vehicle speed deceleration occurs at the freeway exit due to the driving direction change. Well conducting the driver to control the velocity could enhance the vehicle maneuverability and give drivers more response time when running into potential dangerous conditions. The freeway exit speed limit sign (ESLS) is an effect way to remind the driver to slow down the vehicle. The ESLS visibility is significant to guarantee the driving safety. This research focuses on the color variable ESLS system, which is placed at the same location with the traditional speed limit sign. With this system, the driver could receive the updated speed limit recommendation in advance and without distraction produced by eyes contract change over the dashboard and the front sight. First, the mathematical model of the drivetrain and the engine brake is built for typical motor vehicles. The vehicle braking characteristics with various initial speeds in the deceleration area are studied.
Technical Paper

Complex Mode Analysis on Disc Brake Squeal and Design Improvement

2009-05-19
2009-01-2101
Squeal noise in vehicle disc brakes is perceived by comsumers as both annoying and warranty cost. The mechanism is considered a mode coupling phenomenon also referred to as coalescence. In this paper, the system eigenvalues have been computed using a technique based on the • nite element method in order to obtain the dynamical properties of the disc brake assembly. The simulated squeal results were compared with the brake noise test that was in accordance with SAE J2521 standard and showed good correlation for some squeal frequencies which indicated that the research on disc brake squeal using complex mode could predict squeal propensity of the disc brake. Among the methods that have been used to control squeal noise, increasing the system damping has been shown to be very effective. The most commonly used method to increase system damping consists of attaching multi-layer laminates on the back of the brake pads.
Technical Paper

Dynamic Simulation and Optimization of Vehicle-Mounted Multifunctional Mechan-Ical Arm

2023-04-11
2023-01-0772
The multi-functional mechanical arm equipped on engineering vehicle can achieve different functions by installing different mechanism devices through the interface at the end of the mechanical arm. It can achieve functions like engineering construction and road rescue. Mechanical arm systems often work in complex environments, which requires good reliability and safety of the boom system. When the mechanical boom is working, the pressure of each luffing cylinder is large, and the contact force and acceleration of each boom are complex, which requires a certain degree of verification and optimization before it can be put into production. In this paper, a virtual prototype of a vehicle mounted hydraulic mechanical arm with four booms is established. Through ADAMS, the dynamic analysis of mechanical arm under multiple working conditions is carried out, the movement parameter changes and the pressure changes of each luffing cylinder are analyzed.
Technical Paper

Energy-Harvesting Potential and Vehicle Dynamics Conflict Analysis under Harmonic and Random Road Excitations

2018-04-03
2018-01-0568
Energy has the worldwide concern since the World War. Recently, the energy harvesting technology has got more attraction in different fields and applications. Hence, in a world where energy becomes rare and expensive, even the small quantities are worth to be harvested where it can be exploited in different applications. Vehicle suspension is one of the vibration power dissipation sources in which the undesired vibration is dissipated into heat waste. Accordingly, the principal motivation of this study is exploitation the conflict between the potentially harvested power and vehicle dynamics in automotive suspension system induced by road irregularity. Therefore, in terms of RMS conflict diagrams, the conflict between the potential power and vehicle dynamics are sufficiently and comprehensively defined considering a vehicle speed of 20 m/s.
Technical Paper

Intention-Aware Dual Attention Based Network for Vehicle Trajectory Prediction

2022-12-22
2022-01-7098
Accurate surrounding vehicle motion prediction is critical for enabling safe, high quality autonomous driving decision-making and motion planning. Aiming at the problem that the current deep learning-based trajectory prediction methods are not accurate and effective for extracting the interaction between vehicles and the road environment information, we design a target vehicle intention-aware dual attention network (IDAN), which establishes a multi-task learning framework combining intention network and trajectory prediction network, imposing dual constraints. The intention network generates an intention encoding representing the driver’s intention information. It inputs it into the attention module of the trajectory prediction network to assist the trajectory prediction network to achieve better prediction accuracy.
Technical Paper

MPC Based Car-Following Control Considering Uphill and Downhill

2023-04-11
2023-01-0691
At present, most of the longitudinal car-following control algorithms based on model predictive control (MPC) do not consider the influence of the presence of the sloping road on the inter-vehicle distance, resulting in poor tracking capability under ramp conditions. In order to reduce the inter-vehicle distance error under ramp conditions and improve the tracking capability of longitudinal car-following control algorithm. The car-following control algorithm based on MPC considering uphill and downhill is proposed. This algorithm is based on the vehicle structure of fuel passenger cars, and adds a slope angle reconstruction module for implementing slope angle measurement and reducing the complexity of slope angle calculation based on the framework of conventional hierarchical control structure.
Technical Paper

Microwave-Steam Based Road Deicing Vehicle Focused on Thin Ice Layers

2015-04-14
2015-01-0502
For the thin ice on the road in winter, the traditional road deicing vehicle relies on mechanical and chemical methods for melting ice, which is inclined to damage the pavement and has insidious influence on environment. The thermal deicing vehicle has been adopted in recent years. Although the deicing method is available, the deicing efficiency is unacceptable while the energy consumption is huge. The study adopts the new idea of “bottom-to-top” for melting the intersection area between the road surface and the bottom ice layer by the microwave heating firstly and then cleaning them out using high pres. vapor cutting so as to save the cost of energy and enhance the traffic safety. First of all, the mathematical model of the melting process of the intersection of the pavement and the ice layer was established according to the microwave heating characteristics.
Technical Paper

Multidisciplinary Design Optimization of BEV Body Structure

2015-01-14
2015-26-0229
Blade Electric Vehicle (BEV) with a light body plays an important role in saving the energy and reducing the exhaust emission. However, reducing the body weight need to meet the heterogeneous attributes such as structural, safety and NVH (Noise, Vibration and Harshness) performance. With the rapid development of finite element (FE) analysis technology, simulation analysis is widely used for researching the complex engineering design problem. Multidisciplinary Design Optimization (MDO) of a BEV body is a challenging but meaningful task in the automotive lightweight. In present research, the MDO is introduced to optimize a BEV Body-in-White (BIW).
Technical Paper

Over-the-Horizon Safety Speed Warning System for Heavy-Duty Vehicle in Mountain Areas

2017-03-28
2017-01-0091
The mountainous roads are rugged and complex, so that the driver can not make accurate judgments on dangerous road conditions. In addition, most heavy vehicles have characteristics of large weight and high center of gravity. The two factors above have caused most of the car accidents in mountain areas. A research shows that 90% of car accidents can be avoided if drivers can respond within 2-3 seconds before the accidents happen. This paper proposes a speed warning scheme for heavy-duty vehicle over the horizon in mountainous area, which can give the drivers enough time to respond to the danger. In the early warning aspect, this system combines the front road information, the vehicle characteristics and real-time information obtained from the vehicle, calculates and forecasts the danger that may happen over the horizon ahead of time, and prompts the driver to control the vehicle speed.
Technical Paper

Pavement Characteristic Judgment Method Based on Vehicle Speed Change

2018-04-03
2018-01-1088
The road feature has an important influence on the safe speed of the unmanned vehicle and the safe space between two vehicles. Real-time access to the features of the road ahead of time and timely adjustment of engine torque are significant to unmanned driving. Most of the researches nowadays make full use of vehicle sensor technology and environment perception technology. Vehicle sensor is widely used to collect the features of the road. While in this paper, a new type of road feature extraction is proposed based on vehicle speed change. Under the premise of less sensor installed, vehicle speed-time data series is collected. The pavement parameters can be estimated with vehicle speed. Based on the vehicle dynamics, this paper studies the relationship between vehicle speed and rolling resistance. Different road features have different influences on road friction resistance.
Technical Paper

Prediction of Road Slope Ahead of Vehicles Based on Data Fusion and Data Mining

2021-04-06
2021-01-0910
Heavy commercial vehicle drivers may frequently shift gears when they are running on long and downhill roads in mountainous area. In order to improve driving safety and fuel economy, it is necessary to predict the slope of the road ahead in real time and correct the driver's shift strategy in time. At present, the road slope estimation is mainly based on the real-time estimation of the road slope at the current position of the vehicle based on the vehicle driving information obtained by the sensors, but the road slope of the road section that the vehicle is about to reach has not been predicted. In this paper, based on the road slope information of the road section that the driver has driven through, combined with Geographic Information System (GIS) information and road design standards, the slope of the road section ahead is predicted.
Technical Paper

Research on Acoustic Performance of Automotive Exhaust Thermoelectric Generator

2016-04-05
2016-01-0220
With great development of thermoelectric exhaust heat recovery technology, more and more attention has been paid to optimization of automotive thermoelectric generators (ATEGs). A lot of work has been done on optimization of flow field and thermal analysis. However, investigation on acoustic optimization is rather limited. In this paper, efforts have been paid to study the acoustic performance of a flat-plate TEG, and the feasibility of integration of automotive exhaust thermoelectric generator with muffler was discussed. The internal configuration of heat exchanger looks like “fishbone”. Four factors have been taken into consideration: the spacing of two fins, angle of the fins, the diameter of inlet and outlet of exchanger; and filling sound absorbing material in heat exchanger chamber. Based on these four factors, acoustic analysis was carried out.
Technical Paper

Research on Design of Electric Vehicle Sound Synthesis Based on Frequency Shift Algorithm

2024-04-09
2024-01-2335
The active sound generation systems (ASGS) for electric vehicles (EVs) play an important role in improving sound perception and transmission in the car, and can meet the needs of different user groups for driving and riding experiences. The active sound synthesis algorithm is the core part of ASGS. This paper uses an efficient variable-range fast linear interpolation method to design a frequency-shifted and pitch-modified sound synthesis algorithm. By obtaining the operating parameters of EVs, such as vehicle speed, motor speed, pedal opening, etc., the original sound signal is interpolated to varying degrees to change the frequency of the sound signal, and then the amplitude of the sound signal is determined according to different driving states. This simulates an effect similar to the sound of a traditional car engine. Then, a dynamic superposition strategy is proposed based on the Hann window function.
Technical Paper

Research on Garbage Recognition of Road Cleaning Vehicle Based on Improved YOLOv5 Algorithm

2024-04-09
2024-01-2003
As a key tool to maintain urban cleanliness and improve the road environment, road cleaning vehicles play an important role in improving the quality of life of residents. However, the traditional road cleaning vehicle requires the driver to monitor the situation of road garbage at all times and manually operate the cleaning process, resulting in an increase in the driver 's work intensity. To solve this problem, this paper proposes a road garbage recognition algorithm based on improved YOLOv5, which aims to reduce labor consumption and improve the efficiency of road cleaning. Firstly, the lightweight network MobileNet-V3 is used to replace the backbone feature extraction network of the YOLOv5 model. The number of parameters and computational complexity of the model are greatly reduced by replacing the standard convolution with the deep separable convolution, which enabled the model to have faster reasoning speed while maintaining higher accuracy.
X