Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

(Particle) Emissions of Small 2-& 4-Stroke Scooters with (Hydrous) Ethanol Blends

2010-04-12
2010-01-0794
The objectives of the present work are to investigate the regulated and unregulated (particle) emissions of a classical and modern 2-stroke and a typical 4-stroke scooter with different ethanol blend fuels. There is also comparison of two different ethanol fuels: pure ethanol (E) *) and hydrous ethanol (EH) which contains 3.9% water and is denatured with 1.5% gasoline. Special attention is paid in this research to the hydrous ethanol, since the production costs of hydrous ethanol are much less than those for (dry) ethanol. The vehicles are with carburettor and without catalyst, which represents the most frequent technology in Eastern Asia and offers the information of engine-out emissions. Exhaust emissions measurements have been performed with fuels containing ethanol (E), or hydrous ethanol (EH) in the portion of 5, 10, 15 and 20% by volume. During the test systematical analysis of particle mass (PM) and nano-particles counts (NP) were carried out.
Technical Paper

04 Emission Reduction by Cylinder Wall Injection in 2-Stroke S.I. Engines

2002-10-29
2002-32-1773
A direct injection system in which fuel was injected through the cylinder wall was developed and detailed investigation was made for the purpose of reducing short-circuit of fuel in 2-stroke engines. As a result of dynamo tests using 430cc single cylinder engine, it was found that the injector was best attached at a location as close to TDC as possible on the rear transfer port side, and that the entire amount of fuel should be injected towards the piston top surface. Emissions were worsened if fuel was injected towards the exhaust port or spark plug. Although the higher injection pressure resulted in large emissions reduction effects, it did not have a significant effect on fuel consumption. When a butterfly exhaust valve, known to be effective against irregular combustion in the light load range, was applied, it was found to lead to further reductions in HC emission and fuel consumption while also improving combustion stability.
Technical Paper

1-D Numerical Model of a Spark Ignition Engine Fueled with Methanol for Off-Grid Charging Stations

2023-08-28
2023-24-0098
The road transportation sector is undergoing significant changes, and new green scenarios for sustainable mobility are being proposed. In this context, a diversification of the vehicles’ propulsion, based on electric powertrains and/or alternative fuels and technological improvements of the electric vehicles charging stations, are necessary to reduce greenhouse gas emissions. The adoption of internal combustion engines operating with alternative fuels, like methanol, may represent a viable solution for overcoming the limitations of actual grid connected charging infrastructure, giving the possibility to realize off-grid charging stations. This work aims, therefore, at investigating this last aspect, by evaluating the performance of an internal combustion engine fueled with methanol for stationary applications, in order to fulfill the potential demand of an on off-grid charging station.
Technical Paper

100,000 Miles of Fueling 5.9L Cummins Engines with 100% Biodiesel

1996-10-01
962233
Two Cummins B5.9L engines were fueled with 100% biodiesel in excess of 48 months by the Agricultural Engineering Department at the University of Missouri-Columbia. The engines used to power Dodge pickups. The engine lubricating oil was sampled at 1000 mile intervals for analysis. Statistical analysis of the engine lubricating oil indicated that the wear metal levels in the lubricating oil were normal. A reduction in power was noted when the engines were tested using a chassis dynamometer. The 1991 pickup has been driven 110,451 km and the 1992 pickup has been driven approximately 177,022 km. The pickups averaged 6.9 km/L. Engine fuel efficiency and material compatibility issues are addressed in the paper.
Technical Paper

100,000-Mile Evaluation of Transit Buses Operated on Biodiesel Blends (B20)

2006-10-16
2006-01-3253
Nine identical 40-ft. transit buses were operated on B20 and diesel for a period of two years - five of the buses operated exclusively on B20 (20% biodiesel blend) and the other four on petroleum diesel. The buses were model year 2000 Orion V equipped with Cummins ISM engines, and all operated on the same bus route. Each bus accumulated about 100,000 miles over the course of the study. B20 buses were compared to the petroleum diesel buses in terms of fuel economy, vehicle maintenance cost, road calls, and emissions. There was no difference between the on-road average fuel economy of the two groups (4.41 mpg) based on the in-use data, however laboratory testing revealed a nearly 2% reduction in fuel economy for the B20 vehicles. Engine and fuel system related maintenance costs were nearly identical for the two groups until the final month of the study.
Journal Article

1000-Hour Durability Evaluation of a Prototype 2007 Diesel Engine with Aftertreatment Using B20 Biodiesel Fuel

2009-11-02
2009-01-2803
A prototype 2007 ISL Cummins diesel engine equipped with a diesel oxidation catalyst (DOC), diesel particle filter (DPF), variable geometry turbocharger (VGT), and cooled exhaust gas recirculation (EGR) was tested at Southwest Research Institute (SwRI) under a high-load accelerated durability cycle for 1000 hours with B20 soy-based biodiesel blends and ultra-low sulfur diesel (ULSD) fuel to determine the impact of B20 on engine durability, performance, emissions, and fuel consumption. At the completion of the 1000-hour test, a thorough engine teardown evaluation of the overhead, power transfer, cylinder, cooling, lube, air handling, gaskets, aftertreatment, and fuel system parts was performed. The engine operated successfully with no biodiesel-related failures. Results indicate that engine performance was essentially the same when tested at 125 and 1000 hours of accumulated durability operation.
Technical Paper

1970s Development of 21st Century Mobile Dispersed Power

1973-02-01
730709
A mobile and dispersed power system is necessary for an advanced technological-industrial society. Today's petroleum-based system discharges waste products and heat and is growing exponentially. Energy resource commitment has already intersected “ultimate” low-cost petroleum supplies in the United States and will do so for the world before 2000; this portends major changes and cost increases. The twenty-first century system for mobile-dispersed power will reflect the energy source selected to replace petroleum-for example, coal, solar insolation, or uranium. It will incorporate a fuel intermediate such as methanol, ammonia, or hydrogen, and a suitably matched “engine.” The complete change will require more than 25 years because of the magnitude, fragmentation, structural gaps, complexity, and variety of the mobile-dispersed power system.
Technical Paper

1980 CRC Fuel Rating Program - The Effects of Heavy Aromatics and Ethanol on Gasoline Road Octane Ratings

1982-02-01
821211
A gasoline Road Octane study was conducted by the Coordinating Research Council (CRC) to evaluate the effects of heavy aromatics (C9 and heavier) and ethanol content on Road Octane performance independent of Research Octane Number (RON) and Motor Octane Number (MON). Maximum-throttle and part-throttle Road ON’s were found to be well predicted by equations containing only RON and MON terms. Heavier aromatics were found to have a small adverse effect on both maximum-throttle and part-throttle Road ON independent of its direct effects on RON and MON. The all-car data did not show a significant ethanol-content effect, but eight of the thirty-seven cars did show significant effects for ethanol content.
Technical Paper

1D Modeling of Alternative Fuels Spray in a Compression Ignition Engine Using Injection Rate Shaping Strategy

2019-09-09
2019-24-0132
The Injection Rate Shaping consists in a novel injection strategy to control air-fuel mixing quality via a suitable variation of injection timing that affects the injection rate profile. This strategy has already provided to be useful to increase combustion efficiency and reduce pollutant emissions in the modern compression ignition engines fed with fossil Diesel fuel. But nowadays, the ever more rigorous emission targets are enhancing a search for alternative fuels and/or new blends to replace conventional ones, leading, in turn, a change in the air-fuel mixture formation. In this work, a 1D model of spray injection aims to investigate the combined effects of both Injection Rate Shaping and alternative fuels on the air-fuel mixture formation in a compression ignition engine. In a first step, a ready-made model for conventional injection strategies has been set up for the Injection Rate Shaping.
Technical Paper

2-Cycle Methanol LHR Engine and It's Characteristics

1994-10-01
941910
Methanol fuel was tested in a prototype 2-cycle ceramic heat insulated engine with a swirl chamber. It was found that the 2-cycle ceramic heat insulated engine with a compression ratio of 18:1 could ignite methanol without an auxiliary ignition system and emissions were substantially reduced in the whole load range.
Technical Paper

2-Stroke CAI Operation on a Poppet Valve DI Engine Fuelled with Gasoline and its Blends with Ethanol

2013-04-08
2013-01-1674
Controlled Auto Ignition (CAI), also known as Homogeneous Charge Compression Ignition (HCCI), is one of the most promising combustion technologies to reduce the fuel consumption and NOx emissions. Currently, CAI combustion is constrained at part load operation conditions because of misfire at low load and knocking combustion at high load, and the lack of effective means to control the combustion process. Extending its operating range including high load boundary towards full load and low load boundary towards idle in order to allow the CAI engine to meet the demand of whole vehicle driving cycles, has become one of the key issues facing the industrialisation of CAI/HCCI technology. Furthermore, this combustion mode should be compatible with different fuels, and can switch back to conventional spark ignition operation when necessary. In this paper, the CAI operation is demonstrated on a 2-stroke gasoline direct injection (GDI) engine equipped with a poppet valve train.
Technical Paper

3-D Modeling of Conventional and HCCI Combustion Diesel Engines

2004-10-25
2004-01-2964
An investigation of the possibility to extend the 3-dimensional modeling capabilities from conventional diesel to the HCCI combustion mode simulation was carried out. Experimental data was taken from a single cylinder engine operating with early injections for the HCCI and a split-injection (early pilot+main) for the high speed Diesel engine operation. To properly phase the HCCI mode in the experiments, high amounts of cooled EGR and a decreased compression ratio were used. In numerical simulation performed using KIVA3-V code, modified to incorporate the Detailed Chemistry Approach the same conditions were reproduced. Special attention is paid on the analysis of the events leading up to the auto-ignition, which was reasonably well predicted.
Technical Paper

35 Engine Performance of the Small Compression Ignition Engine with DME Low Pressure Injection

2002-10-29
2002-32-1804
In the research of DME compression ignition engine, there are a lot of reports on the high fuel pressure systems which are used in the common-rail fuel injector and others for the DME mixture formation promotion. However, the initial development-cost of these fuel supply systems will be increased for small compression ignition engines. On the other hand, it has been understood that excellent thermal efficiency of DME compression ignition engine was obtained at the appropriate fuel injection timing by using the electronic controlled injector with low pressure injection. In this paper, the stabilization of combustion on DME compression ignition engine with low pressure injection was investigated for the influence of the fuel pressure and the combustion assistance with homogeneous charge.
Technical Paper

3D CFD Modeling of a Biodiesel-Fueled Diesel Engine Based on a Detailed Chemical Mechanism

2012-04-16
2012-01-0151
A detailed reaction mechanism for the combustion of biodiesel fuels has recently been developed by Westbrook and co-workers. This detailed mechanism involves 5037 species and 19990 reactions, which prohibits its direct use in computational fluid dynamic (CFD) applications. In the present work, various mechanism reduction methods included in the Reaction Workbench software were used to derive a semi-detailed biodiesel combustion mechanism, while maintaining the accuracy of the master mechanism for a desired set of engine conditions. The reduced combustion mechanism for a five-component biodiesel fuel was employed in the FORTÉ CFD simulation package to take advantage of advanced chemistry solver methodologies and advanced spray models. Simulations were performed for a Volvo D12C heavy diesel engine fueled by RME fuel using a 72° sector mesh. Predictions were validated against measured in-cylinder parameters and exhaust emission concentrations.
Technical Paper

3D Numerical Characterization of a Multi-Holes Injector in a Quiescent Vessel and Its Application in a Single-Cylinder Research Engine Using Ethanol

2017-11-07
2017-36-0360
The fuel injection in internal combustion engines plays a crucial role in the mixture formation, combustion process and pollutants' emission. Its correct modeling is fundamental to the prediction of an engine performance through a computational fluid dynamics simulation. In the first part of this work a tridimensional numerical simulation of a multi-hole’s injector, using ethanol as fuel, is presented. The numerical simulation results were compared to experimental data from a fuel spray injection bench test in a quiescent vessel. The break up model applied to the simulation was the combined Kelvin-Helmholtz Rayleigh-Taylor, and a sensitivity analysis of the liquid fuel penetration curve, as well on the overall spray shape was performed according to the model constants. Experimental spray images were used to aid the model tuning. The final configuration of the KH-RT model constants that showed best agreement with the measured spray was C3 equal to 0.5, B1, 7 and Cb, 0.
Technical Paper

3D Numerical Simulation of Fuel injection and Combustion Phenomena in DI Diesel Engines

1989-02-01
890668
Recently the analysis of air-fuel mixing and combustion has become important under the stringent emissions regulations of diesel engines. In the case of gasoline engines, the KIVA computer program has been developed and used for the analysis of combustion. In this paper, the calculations of combustion phenomena in DI diesel engines are performed by modifying the KIVA program so as to be applicable to multi-hole nozzles and arbitrary patterns of injection rate. The thermophysical and ther-mochemical properties of gasoline are altered to those diesel fuel. In order to investigate the ability of this modified program, the calculations are compared with the experiments on single cylinder engines concerning the pressure, flame temperature and mass change of chemical species in cylinders. Furthermore, the calculation for the heavy duty DI diesel engine is performed with this diesel combustion program.
Journal Article

3D-CFD RANS Methodology to Predict Engine-Out Emissions with Gasoline-Like Fuel and Methanol for a DISI Engine

2022-09-16
2022-24-0038
Renewable fuels, such as bio- and e-fuels, are of great interest for the defossilization of the transport sector. Among these fuels, methanol represents a promising candidate for emission reduction and efficiency increase due to its very high knock resistance and its production pathway as e-fuel. In general, reliable simulation tools are mandatory for evaluating a specific fuel potential and optimizing combustion systems. In this work, a previously presented methodology (Esposito et al., Energies, 2020) has been refined and applied to a different engine and different fuels. Experimental data measured with a single cylinder engine (SCE) are used to validate RANS 3D-CFD simulations of gaseous engine-out emissions. The RANS 3D-CFD model has been used for operation with a toluene reference fuel (TRF) gasoline surrogate and methanol. Varying operating conditions with exhaust gas recirculation (EGR) and air dilution are considered for the two fuels.
Technical Paper

50,000km On-Road Durability Test of Common-Rail Vehicle with 10% Blend of High Quality Biodiesel (H-FAME) from Jatropha

2015-03-30
2015-01-0115
The effects of high quality biodiesel, namely, partially Hydrogenated Fatty Acid Methyl Ester or H-FAME, on 50,000km on-road durability test of unmodified common-rail vehicle have been investigated. Thailand popular brand new common-rail light duty vehicle, Isuzu D-Max Spacecab, equipped with 4JK1-STD engine (DOHC 4-cylinder 2.5L, M/T 4×2, Euro III emission) was chosen to undergo on-road test composed of well-mixed types of mountain, suburb and urban road conditions over the entire 50,000km. Jatropha-derived high quality biodiesel, H-FAME, conforming to WWFC (worldwide fuel charter) specification, was blended with normal diesel (Euro IV) at 10% (v/v) as tested fuel. Engine performance (torque and power), emission (CO, NOx, HC+NOx and PM), fuel consumption and dynamic response (0-100km acceleration time and maximum velocity) were analyzed at initial, middle and final distance; whereas, used lube oil analysis was conducted every 10,000km.
Technical Paper

50,000km On-Road Durability Test of Common-Rail Vehicle with 20% Blend of High Quality Palm Biodiesel (H-FAME)

2016-03-27
2016-01-1736
The effects of high quality biodiesel, namely, partially Hydrogenated Fatty Acid Methyl Ester or H-FAME, on 50,000km on-road durability test of unmodified common-rail vehicle have been investigated. Thailand brand new common-rail light duty vehicle, Isuzu D-Max Extended cab, equipped with 4JK1-TCX engine (DOHC 4-cylinder 2.5L, M/T 4×2, Euro IV emission) was chosen to undergo on-road test composed of well-mixed types of mountain, suburb and urban road conditions over the entire 50,000km. Palm-derived high quality biodiesel, H-FAME, conforming to WWFC (worldwide fuel charter) specification, was blended with normal diesel (Euro IV) at 20% (v/v) as tested fuel. Engine performance (torque and power), emission (CO, NOx, HC+NOx and PM), fuel consumption and dynamic response (0-100km acceleration time and maximum velocity) were analyzed at initial, middle and final distance; whereas, used lube oil analysis was conducted every 10,000km.
Journal Article

500 Hours Endurance Test on Biodiesel Running a Euro IV Engine

2010-10-25
2010-01-2270
A 500 hours endurance test was performed with a heavy-duty engine (Euro IV); MAN type D 0836 LFL 51 equipped with a PM-Kat®. As fuel 100% biodiesel was used that met the European specification EN 14214. The 500 hours endurance test included both the European stationary and transient cycle (ESC and ETC) as well as longer stationary phases. During the test, regulated emissions (carbon monoxide, nitrogen oxides, hydrocarbons and particulate matter), the particle number distribution and the aldehydes emission were continuously measured. For comparison, tests with fossil diesel fuel were performed before and after the endurance test. During the endurance test, the engine was failure-free for 500 hours with the biogenic fuel. There were almost no differences in specific fuel consumption during the test, but the average exhaust gas temperature increased by about 15°C over the time. Emissions changed only slightly during the test.
X