Refine Your Search

Topic

Author

Search Results

Standard

2-D CAD Template for SAE J826 H-point Machine

2022-02-18
CURRENT
J826/2_202202
This document describes the 2-D computer-aided design (CAD) template for the HPM-1 H-point machine or HPD available from SAE. The elements of the HPD include the curve shapes, datum points and lines, and calibration references. The intended purpose for this information is to provide a master CAD reference for design and benchmarking. The content and format of the data files that are available are also described.
Standard

2-D CAD Template for SAE J826 H-point Machine

2016-10-13
HISTORICAL
J826/2_201610
This document describes the 2-D computer-aided design (CAD) template for the HPM-1 H-point machine or HPD available from SAE. The elements of the HPD include the curve shapes, datum points and lines, and calibration references. The intended purpose for this information is to provide a master CAD reference for design and benchmarking. The content and format of the data files that are available are also described.
Standard

3D CAD for SAE J826 H-Point Machine

2021-11-16
CURRENT
J826/3_202111
This document describes the 3D computer-aided design (CAD) parts and file formats for the HPM-1 H-point machine available from SAE. The intended purpose for this information is to provide a master CAD reference for design and benchmarking.
Standard

A Guide to the Reliability-Centered Maintenance (Rcm) Standard

2023-11-08
WIP
JA1012
SAE JA1012 (“A Guide to the Reliability-Centered Maintenance (RCM) Standard”) amplifies and clarifies each of the key criteria listed in SAE JA1011 (“Evaluation Criteria for RCM Processes”), and summarizes additional issues that must be addressed in order to apply RCM successfully.
Standard

ABRASION RESISTANCE TESTING—VEHICLE EXTERIOR GRAPHICS AND PIN STRIPING

1989-06-01
HISTORICAL
J1847_198906
This SAE Recommended Practice applies to the abrasion resistance testing of decorative tapes, graphics, and pin striping. It may also have relevance to certain vehicle labels and plastic wood grain film. The resistance to abrasive damage is judged qualitatively by its effect on the legibility, pattern, and color of the graphic marking. This recommended practice is intended as a guide toward standard practice but may be subject to frequent change to keep pace with experience and technical advances. This should be kept in mind when considering the use of this recommended practice.
Standard

AERODYNAMIC TESTING OF ROAD VEHICLES

1990-03-01
HISTORICAL
J2071_199003
As a simulation of road driving, wind tunnel testing of full-size vehicles produces certain errors in the aerodynamic forces, aerodynamic moments, and surface pressures. The magnitude of these errors, in general, depends on the following: a Flow quality b Determination of the reference dynamic pressure c Wind tunnel floor boundary layer d Test section geometry and position of the car within that geometry e Shape of the vehicle f Blockage ratio: The ratio of the cross-sectional area of the vehicle to the cross-sectional area of the wind tunnel nozzle g Wheel rotation h Internal flow in the model The SAE Standards Committee, Open Throat Wind Tunnel Adjustments had as a goal to document the knowledge of the influence of model interference on wind tunnel test results for automotive open jet wind tunnels.
Standard

AERODYNAMIC TESTING OF ROAD VEHICLES - OPEN THROAT WIND TUNNEL ADJUSTMENT

1994-06-01
CURRENT
J2071_199406
As a simulation of road driving, wind tunnel testing of full-size vehicles produces certain errors in the aerodynamic forces, aerodynamic moments, and surface pressures. The magnitude of these errors, in general, depends on the following: a Flow quality b Determination of the reference dynamic pressure c Wind tunnel floor boundary layer d Test section geometry and position of the car within that geometry e Shape of the vehicle f Blockage ratio: The ratio of the cross-sectional area of the vehicle to the cross-sectional area of the wind tunnel nozzle g Wheel rotation h Internal flow in the model The SAE Standards Committee, Open Throat Wind Tunnel Adjustments had as a goal to document the knowledge of the influence of model interference on wind tunnel test results for automotive open jet wind tunnels.
Standard

AERODYNAMIC TESTING OF ROAD VEHICLES—TESTING METHODS AND PROCEDURES

1993-01-01
HISTORICAL
J2084_199301
The scope of this SAE Information Report is confined to wind-tunnel testing, although it is recognized that many aspects of the aerodynamic characteristics of road vehicles can be investigated in other test facilities (such as water-tanks) or, especially, on the road. For example, coastdown testing is often used to determine aerodynamic drag (either in isolation or as part of the total resistance), and artificial gust generators are used to investigate the sensitivity of vehicles to cross-wind gusts. Also excluded from the present Report are climatic wind-tunnel tests of road vehicles, which are defined in more detail in Section 3. The Report covers the aerodynamic requirements of a wind-tunnel for automotive testing, together with the facility equipment needed and the requirements affecting the test vehicle or model.
Standard

AIR BRAKE GLADHAND SERVICE (CONTROL) AND EMERGENCY (SUPPLY) LINE COUPLERS

1967-11-01
HISTORICAL
J318_196711
This SAE Recommended Practice is intended to provide a design, critical dimensions, performance requirements, and identification for gladhand-type air line couplers used to connect the brake systems of trucks, truck-tractors, and trailers when these vehicles are joined to operate as a combination unit.
Standard

AUTOMOTIVE GRAY IRON CASTINGS

1993-03-01
HISTORICAL
J431_199303
This SAE Standard covers the hardness, tensile strength, and microstructural requirements for gray iron sand mold castings used in automotive and allied industries. The chemical requirements for alloy gray iron automotive camshafts are included in the document under castings for special application with controlled composition and microstructure. Appendix A provides general information on application of gray iron in automotive castings and chemical composition to meet hardness, microstructural, and other properties needed for particular service conditions. Casting tensile strength estimates are provided in Appendix A for design reference.
Standard

AUTOMOTIVE RUBBER MATS

1982-05-01
HISTORICAL
J80_198205
This specification covers the requirements for rubber floor mats made from five types of rubber compounds as required by the physical property requirements of the application.
Standard

Abrasion Resistance Testing - Vehicle Exterior Graphics and Pin Striping

2021-01-07
CURRENT
J1847_202101
This SAE Recommended Practice applies to the abrasion resistance testing of decorative tapes, graphics, and pin striping. It may also have relevance to certain vehicle labels and plastic wood grain film. The resistance to abrasive damage is judged qualitatively by its effect on the legibility, pattern, and color of the graphic marking. This recommended practice is intended as a guide toward standard practice but may be subject to frequent change to keep pace with experience and technical advances. This should be kept in mind when considering the use of this recommended practice.
Standard

Accessory Drive Tensioner Test Standards

2016-07-01
HISTORICAL
J2436_201607
To document test procedures and set-ups that address known failure modes for Accessory Drive automatic tensioners This SAE Standard does not encompass the pulley or pulley bearing. The sample sizes and acceptance criteria should be determined by agreement between the original equipment manufacturer (OEM) and the supplier. The failure modes to be addressed are: Test Factors include: NOTE: The Belt Drive Committee recommends that this spec be run using test parts that are close to the upper and lower specifications for load output and damping (tails testing).
Standard

Accessory Drive Tensioner Test Standards (Mechanical Rotary Type)

1998-07-01
HISTORICAL
J2436_199807
To document test procedures and set-ups that address known failure modes for mechanical rotary tensioners and establish minimum acceptance criteria. This SAE Standard does not encompass the pulley or pulley bearing. The sample sizes should be determined by agreement between the original equipment manufacturer (OEM) and the supplier. The failure modes to be addressed are: a Durability Corrosion Contamination Structural Wear Temperature Alignment b Functional Clamp Load Damping Drop (Safety) Lift Lugs Load Noise Ozone Snap
Standard

Active Safety Systems Sensor Calibration Terms and Definitions

2023-12-13
CURRENT
J3262_202312
This SAE Information Report provides a compendium of terms, definitions, abbreviations, and acronyms to enable common terminology for use in engineering reports, diagnostic tools, and publications related to active safety systems. This information report is a survey of terms related to calibration of active safety systems. The definitions offered are descriptions of inputs, outputs, and processes rather than technical specifications. Definitions for end-of-line procedures are not included.
Standard

Aerodynamic Testing of Road Vehicles - Testing Methods and Procedures

2016-04-12
CURRENT
J2084_201604
The scope of this SAE Information Report is confined to wind-tunnel testing, although it is recognized that many aspects of the aerodynamic characteristics of road vehicles can be investigated in other test facilities (such as water-tanks) or, especially, on the road. For example, coastdown testing is often used to determine aerodynamic drag (either in isolation or as part of the total resistance), and artificial gust generators are used to investigate the sensitivity of vehicles to cross-wind gusts. Also excluded from the present Report are climatic wind-tunnel tests of road vehicles, which are defined in more detail in Section 3. The Report covers the aerodynamic requirements of a wind-tunnel for automotive testing, together with the facility equipment needed and the requirements affecting the test vehicle or model.
Standard

Aerodynamic Testing of Road Vehicles--Open Throat Wind Tunnel Adjustment

2014-11-18
WIP
J2071
As a simulation of road driving, wind tunnel testing of full-size vehicles produces certain errors in the aerodynamic forces, aerodynamic moments, and surface pressures. The magnitude of these errors, in general, depends on the following: a.) Flow quality, b.) Determination of the reference dynamic pressure, c.) Wind tunnel floor boundary layer, d.) Test section geometry and position of the car within that geometry, e.) Shape of the vehicle, f.) Blockage ratio: The ratio of the cross-sectional area of the vehicle to the cross-sectional area of the wind tunnel nozzle, g.) Wheel rotation, and h.) Internal flow in the model. The SAE Standards Committee, Open Throat Wind Tunnel Adjustments, had as a goal to document the knowledge of the influence of model interference on wind tunnel test results for automotive open jet wind tunnels. This document contains the following information related to this subject: a.) Design data of open throat wind tunnels, b.)
X