Refine Your Search

Search Results

Technical Paper

A Guide to Measurement of Flame Temperature and Soot Concentration in Diesel Engines Using the Two-Colour Method Part 2: Implementation

1994-10-01
941957
The measurement of the instantaneous flame temperature and soot concentration in the combustion chamber of a running diesel engine can provide useful information relating to the formation of two important exhaust pollutants, NOx and particulates. The two-colour method is based on optical pyrometry and it can provide estimates of the instantaneous flame temperature and soot concentration. The theoretical basis of the method is outlined in a companion paper. This paper deals with the practical problems involved in the construction of a working system, including suitable calibration techniques. The accuracy of the measurements of flame temperature and soot concentration is also discussed using results from a various sources.
Technical Paper

Analysis of Tumble and Swirl Motions in a Four-Valve SI Engine

2001-09-24
2001-01-3555
Tumble and swirl motions in the cylinder of a four-valve SI engine with production type cylinder head were investigated using a cross-correlation digital Particle Image Velocimetry (PIV). Tumble motion was measured on the vertical symmetric plane of the combustion chamber. Swirl motion was measured on a plane parallel to the piston crown with one of intake ports blocked. Large-scale flow behaviours and their cyclic variations were analysed from the measured two-dimensional velocity data. Results show that swirl motion is generated at the end of the intake stroke and persists to the end of the compression stroke. Tumble vortex is produced in the early stage of the compression stroke and distorted in the late stage of the stroke. The cyclic variation of swirl motion is noticeable. The cyclic variation in tumble dominated flow field is much greater.
Technical Paper

Combustion Characteristics of CAI Combustion with Alcohol Fuels

2010-04-12
2010-01-0843
Due to its potential for simultaneous improvement in fuel consumption and exhaust emissions, controlled autoignition (CAI) combustion has been subject to continuous research in the last several years. At the same time, there has been a lot of interest in the use of alternative fuels in order to reduce reliance on conventional fossil fuels. Therefore, this experimental study has been carried out to investigate the effect of alcohol fuels on the CAI combustion process and on the resulting engine performance. The experimental work was conducted on an optical single cylinder engine with an air-assisted injector. To achieve controlled autoignition, residual gas was trapped in the cylinder by using negative valve overlap and an intake air heater was used to ensure stable CAI combustion in the optical engine. Methanol, ethanol and blended fuels were tested and compared with the results of gasoline.
Technical Paper

Computational Study of the Effects of Injection Timing, EGR and Swirl Ratio on a HSDI Multi-Injection Diesel Engine Emission and Performance

2003-03-03
2003-01-0346
Reductions in fuel consumption, noise level, and pollutant emissions such as, Nitrogen Oxide (NOX) and Particulate Matter (PM), from direct-injection (DI) diesel engines are important issues in engine research. To achieve these reductions, many technologies such as high injection pressure, multiple injection, retarded injection timing, EGR, and high swirl ratio have been used in high-efficiency DI diesel engines in order to achieve combustion and emission control. However, each technology has its own advantages and disadvantages, and there is a very strong interaction between these methods when they are simultaneously used in the engine. This study presents a computational study of both the individual effect and their interactions of injection timing, EGR and swirl ratio separately and their interaction in a HSDI common rail diesel engine using the KIVA-3V code.
Technical Paper

Continuous Load Adjustment Strategy of a Gasoline HCCI-SI Engine Fully Controlled by Exhaust Gas

2011-04-12
2011-01-1408
Homogeneous charge compression ignition (HCCI) technology is promising to reduce engine exhaust emissions and fuel consumption. However, it is still confronted with the problem of its narrow operation range that covers only the light and medium loads. Therefore, to expand the operation range of HCCI, mode switching between HCCI combustion and transition SI combustion is necessary, which may bring additional problems to be resolved, including load fluctuation and increasing the complexity of control strategy, etc. In this paper, a continuously adjustable load strategy is proposed for gasoline engines. With the application of the strategy, engine load can be adjusted continuously by the in-cylinder residual gas fraction in the whole operation range. In this research, hybrid combustion is employed to bridge the gaps between HCCI and traditional SI and thus realize smooth transition between different load points.
Technical Paper

Developing a Fuel Stratification Concept on a Spark Ignition Engines

2007-04-16
2007-01-0476
A fuel stratification concept has been developed in a three-valve twin-spark spark ignition engine. This concept requires that two fuels or fuel components of different octane numbers (ON) be introduced into the cylinder separately through two independent inlet ports. They are then stratified into two regions laterally by a strong tumbling flow and ignited by the spark plug located in each region. This engine can operate in the traditional stratified lean-burn mode at part loads to obtain a good part-load fuel economy as long as one fuel is supplied. At high loads, an improved fuel economy might also be obtained by igniting the low ON fuel first and leaving the high ON fuel in the end gas region to resist knock. This paper gives a detailed description of developing the fuel stratification concept, including optimization of in-cylinder flow, mixture and combustion.
Technical Paper

Direct In-cylinder CO2 Measurements of Residual Gas in a GDI Engine for Model Validation and HCCI Combustion Development

2013-04-08
2013-01-1654
An accurate prediction of residual burned gas within the combustion chamber is important to quantify for development of modern engines, especially so for those with internally recycled burned gases and HCCI operations. A wall-guided GDI engine has been fitted with an in-cylinder sampling probe attached to a fast response NDIR analyser to measure in-situ the cycle-by-cycle trapped residual gas. The results have been compared with a model which predicts the trapped residual gas fraction based on heat release rate calculated from the cylinder pressure data and other factors. The inlet and exhaust valve timings were varied to produce a range of Residual Gas Fraction (RGF) conditions and the results were compared between the actual measured CO2 values and those predicted by the model, which shows that the RGF value derived from the exhaust gas temperature and pressure measurement at EVC is consistently overestimated by 5% over those based on the CO2 concentrations.
Technical Paper

Effect of Flame Propagation on the Auto-Ignition Timing in SI-CAI Hybrid Combustion (SCHC)

2014-10-13
2014-01-2672
SCHC (SI-CAI hybrid combustion), also known as spark-assisted HCCI, has been proved to be an effective method to stabilize combustion and extend the operation range of high efficiency, low temperature combustion. The combustion is initiated by the spark discharge followed by a propagation of flame front until the auto-ignition of end-gas. Spark ignition and the spark timing can be used to control the combustion event. The goal of this research is to study the effect of flame propagation on the auto-ignition timing in SCHC by means of chemiluminescence imaging and heat release analysis based on an optical engine. With higher EGR (exhaust gas recirculation) rate, more fuel is consumed by the flame propagation and stronger correlation between the flame propagation and auto-ignition is observed.
Technical Paper

Effects of EGR on Heat Release in Diesel Combustion

1998-02-23
980184
The effects of Exhaust Gas Recirculation (EGR) on diesel engine exhaust emissions were isolated and studied in earlier investigations (1,2,3,4,5). This paper analyses the heat release patterns during the combustion process and co-relates the results with the exhaust emissions. The EGR effects considered include the dilution of the inlet charge with CO2 or water vapour, the increase in the inlet charge temperature, and the thermal throttling arising from the use of hot EGR. The use of diluents (CO2 and H2O), which are the principal constituents of EGR, caused an increase in ignition delay and a shift in the location of start of combustion. As a consequence of this shift, the whole combustion process was also shifted further towards the expansion stroke. This resulted in the products of combustion spending shorter periods at high temperatures which lowered the NOx formation rate.
Technical Paper

Evaluating the EGR-AFR Operating Range of a HCCI Engine

2005-04-11
2005-01-0161
We present a computational tool to develop an exhaust gas recirculation (EGR) - air-fuel ratio (AFR) operating range for homogeneous charge compression ignition (HCCI) engines. A single cylinder Ricardo E-6 engine running in HCCI mode, with external EGR is simulated using an improved probability density function (PDF) based engine cycle model. For a base case, the in-cylinder temperature and unburned hydrocarbon emissions predicted by the model show a satisfactory agreement with measurements [Oakley et al., SAE Paper 2001-01-3606]. Furthermore, the model is applied to develop the operating range for various combustion parameters, emissions and engine parameters with respect to the air-fuel ratio and the amount of EGR used. The model predictions agree reasonably well with the experimental results for various parameters over the entire EGR-AFR operating range thus proving the robustness of the PDF based model.
Technical Paper

Expansion of external EGR effective region and influence of dilution on boosted operation of a downsized turbocharged GDI engine

2019-12-19
2019-01-2252
Engine downsizing is an effective technology to lower automotive CO2 emissions. However, the high load low speed regions are plagued with knocking combustion that are usually overcome by retarding the ignition. This interferes with the efficiency gains due to very late combustion. This paper reports the use of Exhaust Gas Recirculation (EGR) on a Ford Ecoboost 1l downsized gasoline turbocharged direct injection (GTDI) engine to improve efficiency by optimising combustion phasing unlocked by the improved knock resistance with EGR dilution. Further ignition system upgrades are tested for impact towards further efficiency improvements. 75mJ (standard) and 120mJ (high energy) ignition systems were compared. The experimental results showed that the brake specific fuel consumption (BSFC) can be improved by 5.6% with EGR dilution at 25%. When considering combined effects of EGR and high energy ignition upon engine fuel economy, the BSFC gain improves to 7.9%.
Technical Paper

Experimental Investigation of the Effects of Combined Hydrogen and Diesel Combustion on the Emissions of a HSDI Diesel Engine

2008-06-23
2008-01-1787
The effects of load, speed, exhaust gas recirculation (EGR) level and hydrogen addition level on the emissions from a diesel engine have been investigated. The experiments were performed on a 2.0 litre, 4 cylinder, direct injection engine with a high pressure common-rail injection system. Injection timing was varied between 14° BTDC and TDC and injection pressures were varied from 800 bar to 1400 bar to find a suitable base point. EGR levels were then varied from 0% to 40%. Hydrogen induction was varied between 0 and 6% vol. of the inlet charge. In the case of using hydrogen and EGR, the hydrogen replaced air. The load was varied from 0 to 5.4 bar BMEP at two engine speeds, 1500 rpm and 2500 rpm. For this investigation the carbon monoxide (CO), total unburnt hydrocarbons (THC), nitrogen oxides (NOx) and the filter smoke number (FSN) were all measured.
Technical Paper

Experimental Investigation on DME Assisted Gasoline CAI/HCCI Combustion with Intake Re-Breathing Valve Strategy

2015-09-01
2015-01-1818
In order to investigate feasibility of DME (Di-methyl ether) assisted gasoline CAI (controlled-auto ignition) combustion, direct DME injection is employed to act as the ignition source to trigger the auto-ignition combustion of premixed gasoline/air mixture with high temperature exhaust gas. Intake re-breathing valve strategy is adopted to obtain internal exhaust recirculation (EGR) that regulates heat release rate and ignitability of the premixed gasoline and air mixture. The effects of intake re-breathing valve timing and 2nd DME injection timing of different split injection ratios were investigated and discussed in terms of combustion characteristics, emission and efficiencies. The analyses showed that re-breathing intake valve timing had a large effect on the operation range of CAI combustion due to EGR and intake temperature variation.
Technical Paper

Experimental Study on Spark Assisted Compression Ignition (SACI) Combustion with Positive Valve Overlap in a HCCI Gasoline Engine

2012-04-16
2012-01-1126
The spark-assisted compression ignition (SACI) is widely used to expend the high load limit of homogeneous charge compression ignition (HCCI), as it can reduce the high heat release rate effectively while partially maintain the advantage of high thermal efficiency and low NOx emission. But as engine load increases, the SACI combustion traditionally using negative valve overlap strategy (NVO) faces the drawback of higher pumping loss and limited intake charge availability, which lead to a restricted load expansion and a finite improvement of fuel economy. In this paper, research is focused on the SACI combustion using positive valve overlap (PVO) strategy. The characteristics of SACI combustion employing PVO strategy with external exhaust gas recirculation (eEGR) are investigated. Two types of PVO strategies are analyzed and compared to explore their advantages and defects, and the rules of adjusting SACI combustion with positive valve overlap are concluded.
Technical Paper

Exploring the NOx Reduction Potential of Miller Cycle and EGR on a HD Diesel Engine Operating at Full Load

2018-04-03
2018-01-0243
The reduction in nitrogen oxides (NOx) emissions from heavy-duty diesel engines requires the development of more advanced combustion and control technologies to minimize the total cost of ownership (TCO), which includes both the diesel fuel consumption and the aqueous urea solution used in the selective catalytic reduction (SCR) aftertreatment system. This drives an increased need for highly efficient and clean internal combustion engines. One promising combustion strategy that can curb NOx emissions with a low fuel consumption penalty is to simultaneously reduce the in-cylinder gas temperature and pressure. This can be achieved with Miller cycle and by lowering the in-cylinder oxygen concentration via exhaust gas recirculation (EGR). The combination of Miller cycle and EGR can enable a low TCO by minimizing both the diesel fuel and urea consumptions.
Technical Paper

Investigation of CAI Combustion with Positive Valve Overlap and Enlargement of CAI Operating Range

2009-04-20
2009-01-1104
Controlled Auto-Ignition (CAI) combustion was investigated in a Ricardo E6 single cylinder, four-stroke gasoline engine. CAI combustion was achieved by employing positive valve overlap in combination with variable compression ratios and intake air temperatures. The combustion characteristics and emissions were studied in order to understand the major advantages and drawbacks of CAI combustion with positive valve overlap. The enlargement of the CAI operational region was obtained by boosting intake air and adding external EGR. The lean-boosted operation elevated the range of CAI combustion to the higher load region, whilst the use of external EGR allowed the engine to operate with CAI combustion in the region between boosted and N/A CAI operational ranges. The results were analyzed to investigate combustion characteristics, performance and emissions of the boosted CAI operations.
Technical Paper

Investigation of EGR and Miller Cycle for NOx Emissions and Exhaust Temperature Control of a Heavy-Duty Diesel Engine

2017-10-08
2017-01-2227
In order to meet increasingly stringent emissions standards and lower the fuel consumption of heavy-duty (HD) vehicles, significant efforts have been made to develop high efficiency and clean diesel engines and aftertreatment systems. However, a trade-off between the actual engine efficiency and nitrogen oxides (NOx) emission remains to minimize the operational costs. In addition, the conversion efficiency of the diesel aftertreatment system decreases rapidly with lower exhaust gas temperatures (EGT), which occurs at low load operations. Thus, it is necessary to investigate the optimum combustion and engine control strategies that can lower the vehicle’s running costs by maintaining low engine-out NOx emissions while increasing the conversion efficiency of the NOx aftertreament system through higher EGTs.
Technical Paper

Investigation of Split Injection in a Single Cylinder Optical Diesel Engine

2010-04-12
2010-01-0605
Over the last decade, the diesel engine has made dramatic progress in its performance and market penetration. However, in order to meet future emissions legislations, Nitrogen Oxides (NOx) and particulate matters' (PM) emissions will need to be reduced simultaneously. Nowadays researchers are focused on different combustion modes which can have a great potential for both low soot and low NOx. In order to achieve this, different injection strategies have been investigated. This study investigates the effects of split injection strategies with high levels of Exhaust Gas Recirculation (EGR) on combustion performance and emissions in a single-cylinder direct injection optical diesel engine. The investigation is focused on the effects of injection timing of split injection strategies. A Ricardo Hydra single-cylinder optical engine was used in which conventional experimental methods like cylinder pressure data, heat release analysis and exhaust emissions analysis were applied.
Book

Laser Diagnostics and Optical Measurement Techniques in Internal Combustion Engines

2012-07-30
The increasing concern about CO2 emissions and energy prices has led to new CO2 emission and fuel economy legislation being introduced in world regions served by the automotive industry. In response, automotive manufacturers and Tier-1 suppliers are developing a new generation of internal combustion (IC) engines with ultra-low emissions and high fuel efficiency. To further this development, a better understanding is needed of the combustion and pollutant formation processes in IC engines. As efficiency and emission abatement processes have reached points of diminishing returns, there is more of a need to make measurements inside the combustion chamber, where the combustion and pollutant formation processes take place. However, there is currently no good overview of how to make these measurements.
Technical Paper

Lubricant Induced Pre-Ignition in an Optical SI Engine

2014-04-01
2014-01-1222
This work was concerned with study of lubricant introduced directly into the combustion chamber and its effect on pre-ignition and combustion in an optically accessed single-cylinder spark ignition engine. The research engine had been designed to incorporate full bore overhead optical access capable of withstanding peak in-cylinder pressures of up to 150bar. An experiment was designed where a fully formulated synthetic lubricant was deliberately introduced through a specially modified direct fuel injector to target the exhaust area of the bore. Optical imaging was performed via natural light emission, with the events recorded at 6000 frames per second. Two port injected fuels were evaluated including a baseline commercial grade gasoline and low octane gasoline/n-heptane blend. The images revealed the location of deflagration sites consistently initiating from the lubricant itself.
X