Refine Your Search

Topic

Search Results

Technical Paper

An Approach to Charge Stratification in Lean-Burn, Spark- Ignition Engines

1994-10-01
941878
A constant-volume combustion chamber was used to examine injection of a small quantity of slightly rich fuel/air mixture towards the spark plug around the time of ignition, in an overall very lean mixture rotating at velocities representative of modern spark-ignition engines. The results show that it is possible to achieve 100% ignitability with overall air-fuel ratios in excess of 50 and much faster burn rates than those with initially homogenous mixtures of the same equivalence ratio with high swirl and turbulence. The advantages of this method of local charge stratification have been demonstrated in terms of both pressure measurements and shadowgraphs of the early flame development while the transient characteristics of the injected rich mixture at the spark plug gap were monitored by a fast flame ionization detector.
Technical Paper

Analysis of Consecutive Fuel Injection Rate Signals Obtained by the Zeuch and Bosch Methods

1993-03-01
930921
The injection rate signals from a commercial diesel fuel injection system, based on a distributor pump driven by a DC motor, were characterised independently and consecutively by two injection rate meters based on the Zeuch and Bosch methods. The signals were first analysed in terms of their shot-to-shot variations over 64 consecutive injections and the correlations between needle lift and injection rate over a range of pump speeds and loads quantified by Fast Fourier Transform. A direct comparison of the injection rate signals on a cycle-resolved basis was achieved by connecting two consecutive injectors from the pump-line-nozzle injection system to a Bosch- and a Zeuch-based injection rate meters. The signals were acquired over a large number of injections in terms of mean and rms of the injected quantity, mean injection rate, maximum injection rate, average cumulative fuel injected and average injection duration.
Technical Paper

Correlation between Spark Ignition Characteristics and Flame Development in a Constant-Volume Combustion Chamber

1992-02-01
920413
The electrical characteristics of transistorized coil ignition (TCI) and capacitor discharge ignition (CDI) systems were investigated in spark-ignited quiescent and flowing propane/air mixtures within an optically-accessible, cylindrical constant-volume combustion chamber. Under quiescent flow conditions, the initial pressure, temperature and equivalence ratio of the mixture as well as the spark gap width and geometry were varied systematically in order to examine the relationship between ignition characteristics and flame initiation and development. The effect of the flow in the spark gap on the electrical characteristics of the ignition system, mixture ignitability and flame development was also examined by varying the pre-ignition mean flow and turbulence as well as the spark plug orientation relative to the mean flow.
Technical Paper

Development of a Piston-Ring Lubrication Test-Rig and Investigation of Boundary Conditions for Modelling Lubricant Film Properties

1995-10-01
952468
A test-rig has been developed to simulate under idealised conditions the lubricating action between the piston-ring and the cylinder-liner in reciprocating engines. Complications arising in production engine piston-assemblies such as lubricant starvation, ring and piston dynamics, thermal and elastic deformations and blowby can thus be avoided so that the lubricant film characteristics are examined in isolation. The lubricant film thickness and friction at the piston-ring/liner interface were simultaneously measured throughout the stroke as a function of speed and load and compared with the solution of the Reynolds equation for a range of boundary conditions. The examined conditions included the Swift-Stieber (Reynolds), the separation and limiting cases of the Floberg and the Coyne & Elrod boundary conditions using a numerically efficient general purpose program.
Technical Paper

Droplet Velocity/Size and Mixture Distribution in a Single-Cylinder Four-Valve Spark-Ignition Engine

1998-02-01
981186
Laser Doppler velocimetry, phase Doppler anemometry and Mie scattering were applied to a single-cylinder, four-valve, spark-ignition gasoline research engine equipped with a fully transparent liner and piston, to obtain information about the tumble flow and the droplet size and velocity distributions during induction and compression, for lean air/fuel mixture ratios of 17.5 and 24 and with closed-valve and open-valve fuel injection. The mixture distribution obtained with the two injection strategies was correlated with flame images, pressure analysis and exhaust emissions which confirmed the advantages of combining open-valve injection with tumble to allow stable and efficient engine operation at an air/fuel ratio of 24 through charge stratification and faster flame growth.
Technical Paper

Effect of Inlet Parameters on the Flow Characteristics in a Four-Stroke Model Engine

1982-02-01
820750
The flow structure in a four-stroke model engine motored at 200 rpm with a compression ratio of 3.5 has been investigated. Ensemble-averaged axial and swirl mean and rms velocities have been obtained by laser-Doppler anemometry downstream of an axisymmetrically located single valve with 30 and 60 degree seat angles and various lifts, with and without induction swirl. In all cases, the intake-generated flow structure in the axial plane disappears by the time the inlet valve closes and results in nearly homogeneous turbulence during compression with levels of 0.5–0.7 times the mean piston speed. The swirling flow, however, which is induced by means of vanes, persists through the compression stroke, evolving from a spiralling motion early during intake into solid body type of rotation near TDC of compression, with associated swirl ratios increasing with valve lift.
Technical Paper

Effect of Tumble Strength on Combustion and Exhaust Emissions in a Single-Cylinder, Four-Valve, Spark-Ignition Engine

1998-02-23
981044
Direct flame imaging and pressure analysis were applied to the combustion of gasoline and compressed natural gas (CNG) in a single-cylinder, four-valve spark-ignition engine equipped with optical access via quartz windows in the cylinder liner and piston crown. Tests were performed at three engine speed/load conditions and at equivalence ratios of 1.0, 0.9 and 0.8. The four-valve head incorporated two different port geometries, with and without metal sleeves to deflect the intake air flow, in order to investigate the effect of tumble strength on combustion and engine-out emissions of unburned hydrocarbons and NOx. The results showed that sleeving of the intake ports produced a significant increase in IMEP and a reduction in CoV IMEP for both CNG and gasoline, due to the greatly reduced bum duration.
Technical Paper

Evaluation of Pump Design Parameters in Diesel Fuel Injection Systems

1995-02-01
950078
A computer model solving the 1-D flow in a typical fuel injection system for direct-injection diesel engines is presented. A Bosch distributor - type VE pump connected to four Stanadyne pencil - type nozzles has been used to validate the computer model over a wide range of operating conditions. Validation of the developed computer code has been performed for eight representative test cases. The predicted values which were compared with the experimental ones include the pumping chamber pressure, the line pressure, the needle lift and the injection rate. Results using as input the measured pumping chamber pressure are also presented in order to identify the error in the injection rate signal attributed to the difference between the simulated and the experimental pumping chamber pressure. In addition, the total fuel injection quantity for pump speeds between 500 and 2000 rpm and lever positions between 20% to 100% was calculated and compared with measurements.
Technical Paper

Experimental Evaluation of a Wall-Flow Filter for Gasoline Engine Particulate Emission Control

2001-09-23
2001-24-0072
Motivated by the possibility of future emission regulations based on particle number as well as mass, after-treatment of ultrafine particles by a cordierite wallflow filter has been investigated. In a laboratory simulation, synthetic carbon particles of known size and concentration in air were captured with number-based efficiency exceeding 70% in the 20–100 nm size range. Effects of temperature, up to 400°C, filter loading time and ambient-temperature sample dilution have been quantified. Steady-speed and European drive cycle results for the same filter fitted to a passenger car with gasoline direct-injection engine have shown promising reductions in emissions, except at the highest speed of the cycle.
Technical Paper

Flow and Combustion in a Hydra Direct-Injection Diesel Engine

1991-02-01
910177
Measurements of flow, spray, combustion and performance characteristics are reported for a Hydra direct-injection diesel, based on the Ford 2.5 L, engine and equipped with a variable-swirl port, a unit fuel injector and optical access through the liner and piston. The results provide links between the pre-combustion and combustion flow and, at the same time, between purpose-built single-cylinder optical engines and multi-cylinder production engines of nearly identical combustion chamber geometry. In particular, the spray penetration was found to depend on engine speed, rather than load, with velocities up to around 260 m/s at atmospheric pressure and temperature which are reduced by a factor of 2.5 under operating conditions and seem to be unaffected by swirl. The duration of combustion was reduced with increasing swirl and ignition delay increased linearly with engine speed.
Technical Paper

Flow and Spray Investigation in Direct Injection Gasoline Engines

2002-03-04
2002-01-0832
An investigation into the spray structure generated by two swirl pressure atomisers under various operating conditions in a constant-volume chamber and the in-cylinder flow pattern in an optical research direct-injection gasoline engine has been performed using CCD camera and laser Doppler velocimetry, respectively. The results provided detailed information about the effect of back pressure on the spray structure generated by the two injectors and the in-cylinder flow field which the sprays encounter following fuel injection into the cylinder during the induction and compression strokes.
Journal Article

Fuel Film Behavior Analysis Using Simulated Intake Port

2009-11-03
2009-32-0129
Transient behavior of the engine is one of the most crucial factors for motorcycle features. Characterization of the fuel film with port fuel injection (PFI) is necessary to enhance this feature with keeping others, such as high output, low emissions and good fuel consumption. In order to resolve the complicated phenomena in real engine condition into simple physical issues, a simulated intake port was used in our research with Laser Induced Fluorescence (LIF) technique to allow accurate measurement of the fuel film thickness, complemented by visualization of the film development and spray behavior using high-speed video imaging. Useful results have been conducted from the parametric studies with various sets of conditions, such as injection quantity, air velocity and port backpressure.
Technical Paper

Gaseous Simulation of Diesel-Type Sprays in a Motored Engine

1989-02-01
890793
The effect of fuel injection on the flow and the spray/swirl and spray/piston interactions in direct-injection diesel engines have been investigated by simulating diesel sprays with gaseous jet(s) injected through centrally located, single- and multi-hole nozzles into the quiescent and swirling air of a motored engine running at 200rpm and incorporating a flat piston and a re-entrant piston-bowl. The axisymmetric velocity field with and without ‘fuel’ injection was characterised by laser velocimetry near TDC of compression in terms of spatially-resolved ensemble-averaged axial and swirl velocities, the ‘fuel’ concentration field was quantified by laser Rayleigh scattering and the two-dimensional flow was visualised by gated still photography using hollow microballoons as light scatterers.
Technical Paper

Internal Flow and Cavitation in a Multi-Hole Injector for Gasoline Direct-Injection Engines

2007-04-16
2007-01-1405
A transparent enlarged model of a six-hole injector used in the development of emerging gasoline direct-injection engines was manufactured with full optical access. The working fluid was water circulating through the injector nozzle under steady-state flow conditions at different flow rates, pressures and needle positions. Simultaneous matching of the Reynolds and cavitation numbers has allowed direct comparison between the cavitation regimes present in real-size and enlarged nozzles. The experimental results from the model injector, as part of a research programme into second-generation direct-injection spark-ignition engines, are presented and discussed. The main objective of this investigation was to characterise the cavitation process in the sac volume and nozzle holes under different operating conditions. This has been achieved by visualizing the nozzle cavitation structures in two planes simultaneously using two synchronised high-speed cameras.
Technical Paper

Internal Flow and Spray Characteristics of Pintle-Type Outwards Opening Piezo Injectors for Gasoline Direct-Injection Engines

2007-04-16
2007-01-1406
The near nozzle exit flow and spray structure generated by an enlarged model of a second generation pintle type outwards opening injector have been investigated under steady flow conditions as a function of flow-rate and needle lift. A high resolution CCD camera and high-speed video camera have been employed in this study to obtain high-magnification images of the internal nozzle exit flow in order to identify the origin of string ligaments/droplets formation at the nozzle exit. The images of the flow around the nozzle seat area showed clearly that air was entrained from outside into the nozzle seat area under certain flow operating conditions (low cavitation number, CN); the formed air pockets inside the annular nozzle proved to be the main cause of the breaking of the fuel liquid film into strings as it emerged from the nozzle with a structure consisting of alternating thin and thick liquid filaments.
Technical Paper

Measurements of the Lubricant Film Thickness in the Cylinder of a Firing Diesel Engine Using LIF

1998-10-19
982435
A laser-induced fluorescence (LIF) system has been developed to obtain measurements of the instantaneous lubricant film thickness in the piston-cylinder assembly of a firing single-cylinder, direct-injection diesel engine. Measurements were made at top-dead-centre (TDC), mid-stroke and bottom-dead-centre (BDC) position by means of three fibre optic probes inserted into the cylinder liner and mounted flush with its surface. Following extensive repeatability tests, the cycle-averaged lubricant film thickness was estimated for different multi-grade oils as a function of engine speed, load and temperature. The results quantified the dependence of the film thickness ahead, under and behind the piston rings on oil chemistry and viscometric properties, thus confirming the important role of the LIF technique in the development and formulation of new engine oils.
Technical Paper

Nozzle Hole Film Formation and its Link to Spray Characteristics in Swirl-Pressure Atomizers for Direct Injection Gasoline Engines

2002-03-04
2002-01-1136
The numerical methodology used to predict the flow inside pressure-swirl atomizers used with gasoline direct injection engines and the subsequent spray development is presented. Validation of the two-phase CFD models used takes place against film thickness measurements obtained from high resolution CCD-based images taken inside the discharge hole of a pressure swirl atomizer modified to incorporate a transparent hole extension. The transient evolution of the film thickness and its mean axial and swirl velocity components as it emerges from the nozzle hole is then used as input to a spray CFD model predicting the development of both non-evaporating and evaporating sprays under a variety of back pressure and temperature conditions. Model predictions are compared with phase Doppler anemometry measurements of the temporal and spatial variation of the droplet size and velocity as well as CCD spray images.
Technical Paper

Spray Characteristics of Single- and Two-Spring Diesel Fuel Injectors

1993-03-01
930922
The spatial and temporal characteristics of the non-evaporating diesel sprays injected into the atmosphere through two pump-pipe-nozzle systems used in small DI diesel engines have been investigated by laser-single-beam deflection and phase-Doppler anemometry (PDA). The injectors used for these tests comprised a single-spring and a prototype two-spring multihole-type nozzle. The results provided quantitative information about the effect that the second spring exerts on injection duration and spray characteristics, i.e. it increases injection duration and, at the same time, improves fuel atomisation during the main injection period.
Technical Paper

Spray Structure Generated by Multi-Hole Injectors for Gasoline Direct-Injection Engines

2007-04-16
2007-01-1417
The performance of multi-hole injectors designed for use in second-generation direct-injection gasoline engines has been characterised in a constant-volume chamber. Two types of multi-hole injector have been used: the first has 11 holes, with one hole on the axis of the injector and the rest around the axis at 30 degrees apart, and the second has 6 asymmetric holes located around the nozzle axis. Measurements of droplet axial and radial velocity components and their diameter were obtained using a 2-D phase Doppler anemometer (PDA) at injection pressures up to 120 bar, chamber pressures from atmospheric to 8 bar, and ambient temperatures. Complementary spray visualisation made use of a pulsed light and a CCD camera synchronised with the injection process.
Technical Paper

Spray and Combustion Development in a Four-Valve Optical DI Diesel Engine

2000-03-06
2000-01-1183
An optical single-cylinder four-valve high speed DI Diesel engine equipped with a high-pressure electronic fuel injection system has been used to obtain information about the spray development, combustion and exhaust emissions (NOx and smoke levels) for a range of operating conditions corresponding to engine speeds between 600 and 1800 rpm, injection pressures up to 1200 bars and fuel injection quantities from idle to full load. Two six-hole vertical mini-sac type injection nozzles with different hole sizes have been employed in order to investigate the effect of nozzle hole diameter on spray formation, combustion and exhaust emissions. Parallel to the experimental programme, a computational investigation of the fuel flow distribution inside the injection system and of the subsequent spray characteristics has been performed in order to assist in the interpretation of the results.
X