Refine Your Search

Topic

Author

Search Results

Technical Paper

3-D PIV Analysis of Structural Behavior of D.I. Gasoline Spray

2001-09-24
2001-01-3669
Three-dimensional behaviors of direct injection (D.I.) gasoline sprays were investigated using 2-D and 3-D particle image velocimetry (PIV) techniques. The fuel was injected with a swirl type injector for D.I. gasoline engines into a constant volume chamber in which ambient pressure was varied from 0.1 to 0.4 MPa at room temperature. The spray was illuminated by a laser light sheet generated by a double-pulsed Nd:YAG laser (wave length: 532 nm) and the succeeding two tomograms of the spray were taken by a high-resolution CCD camera. The 2-D and 3-D velocity distributions of the droplet cloud in the spray were calculated from these tomograms by using the PIV technique. The effects of the swirl groove flows in the injector and the ambient pressure on the structural behavior of the droplet cloud in the spray were also examined.
Technical Paper

A Practical Calculation Method for Injection Pressure and Spray Penetration in Diesel Engines

1992-02-01
920624
Spray penetration for Diesel injectors, where injection pressure varies with time during the injection period, was calculated. In order to carry out this calculation, the discharge coefficients of the needle-seat opening passage and discharge hole in orifice-type Diesel nozzles were investigated separately. Simple empirical correlations were obtained between these coefficients and needle lift. Then, by introducing these correlations, the injection pressure, which is defined as the pressure in the sac chamber just upstream of the discharge hole, was either derived from measured fuel supply line pressure, or predicted by means of an injection system simulation. Finally, based on the transient injection pressure, spray tip penetration was calculated by taking the overall line which covers the trajectories of all fuel elements ejected during the injection period.
Technical Paper

An Analysis of Ambient Air Entrainment into Split Injection D.I. Gasoline Spray by LIF-PIV Technique

2002-10-21
2002-01-2662
Effects of split injection, with a relatively short time interval between the two sprays, on the spray development process, and the air entrainment into the spray, were investigated by using laser induced fluorescence and particle image velocimetry (LIF-PIV) techniques. The velocities of the spray and the ambient air were measured. The cumulative mass of the ambient air entrained into the spray was calculated by using the entrainment velocity normal to the spray boundary. The vortex structure of the spray, formed around the leading edge of the spray, showed a true rotating flow motion at low ambient pressures of 0.1 MPa, whereas at 0.4 MPa, it was not a true rotating flow, but a phenomenon of the small droplets separating from the leading edge of the spray and falling behind, due to air resistance. The development processes of the 2nd spray were considerably different from that of the 1st spray because the 2nd spray was injected into the flow fields formed by the 1st spray.
Technical Paper

An Analysis of Droplets and Ambient Air Interaction in a D.I. Gasoline Spray Using LIF-PIV Technique

2002-03-04
2002-01-0743
Measurements of the droplet and ambient air velocities in and around a D.I. gasoline spray were made by combining the laser induced fluorescence (LIF) and the particle image velocimetry (PIV) techniques. Before the fuel spray was injected into a constant volume vessel, rhodamine B-water solution was injected into the ambient air by a swirl-type injector for dispersing the fine fluorescent liquid particles as tracers for the ambient air motion. The fuel spray was injected into the fluorescent tracer clouds by a D.I. gasoline injector and was illuminated by an Nd:YAG laser light sheet (wave length: 532 nm). The light scattered by the droplets in the fuel spray was the same as the Nd:YAG laser wavelength, whereas the light emitted by the fluorescent tracer clouds was at a longer wavelength.
Technical Paper

An Experimental Study on Mixture Formation Process of Flat Wall Impinging Spray Injected by Micro-Hole Nozzle under Ultra-High Injection Pressures

2008-06-23
2008-01-1601
Increasing injection pressure and decreasing nozzle hole diameter have been proved to be two effective approaches to reduce the exhaust emissions and to improve the fuel economy. Recently, the micro-hole nozzles and ultra-high injection pressures are applicable in commercial Diesel engines. But the mechanism of these two latest technologies is still unclear. The current research aims at providing information on the spray and mixture formation processes of the micro-hole nozzle (d=0.08mm) under the ultra-high injection pressure (Pinj=300MPa). The flat wall impinging sprays were focused on and the laser absorption-scattering (LAS) technique was employed to obtain the qualitative and quantitative information at both atmospheric and elevated conditions. The spray parameters were collected, the mixing rate was discussed, and the effects of various parameters on mixture formation were clarified.
Technical Paper

An Insight Into Effect of Split Injection on Mixture Formation and Combustion of DI Gasoline Engines

2004-06-08
2004-01-1949
In the previous study of the authors, it was found that some benefits for the mixture preparation of DI gasoline engines can be offered by splitting the fuel injection, such as the phenomenon of high density liquid phase fuel piling up at the leading edge of the spray can be circumvented. In a further analysis, the vapor quantity in the “stable operating” range (equivalence ratio of vapor ϕv in a range of 0.7≤ϕv≤1.3) was significantly increased by the split injection compared to the single injection. In this work, the mechanism of the effect of the split injection on the mixture formation process was studied by combining the laser-sheet imaging, LIF-PIV and the LAS (Laser Absorption Scattering) technique. As a result, it is found that the spray-induced ambient air motion can help the formation of the more combustible mixture of the split injection whereas it played a minus role of diluting the spray by the single injection.
Technical Paper

Approach to Low NOx and Smoke Emission Engines by Using Phenomenological Simulation

1993-03-01
930612
A phenomenological spray-combustion model of a D.I. Diesel engine was applied to study the engine parameters with potential for reducing NOx and smoke emissions. The spray-combustion model, first developed at the University of Hiroshima in 1976, has been sophisticated by incorporating new knowledge of diesel combustion. The model was verified using data from an experimental, single cylinder, D.I. diesel engine with a bore of 135mm and a stroke of 130mm. After the verification process, calculations were made under a wide range of the engine parameters, such as intake air temperature, intake air pressure, intake swirl ratio, nozzle hole diameter, injection pressure, air entrainment rate into the spray, and injection rate profile. These calculations estimated the effects of the engine parameters on NOx, smoke and specific fuel consumption. As a result of the calculations, an approach for the low NOx and smoke emission engine was found.
Technical Paper

Breakup Process of an Initial Spray Injected by a D.I. Gasoline Injector-Simultaneous Measurement of Droplet Size and Velocity by Laser Sheet Image Processing and Particle Tracking Technique

2003-10-27
2003-01-3107
The breakup and atomization processes of the pre-swirl spray, which is produced before the hollow-cone spray from a high-pressure swirl-type D.I. gasoline injector, were investigated under different ambient pressure conditions. The injector has a press-fitted swirl tip, in which six tangential slots giving the injecting fuel an angular momentum are perforated at an equal space interval. A microscopic imaging technique was applied to get the spatially high-resolution LIF tomograms of the pre-swirl spray. The sprays were illuminated by an Nd:YAG laser light sheet and imaged using a high resolution CCD camera, fixed with a micro lens and coupled with an optical low-pass filter. The droplet size and the individual droplet's velocity were obtained by applying the image processing and the particle tracking techniques, respectively.
Journal Article

Characteristics of Evaporating Diesel Spray: A Comparison of Laser Measurements and Empirical/Theoretical Predictions

2009-04-20
2009-01-0854
The objective of the paper is to characterize the diesel spray under the ambient conditions relevant for direct injection (D.I.) diesel engines. The particular emphasis is on the comparisons between laser measurements and predictions by empirical correlations and theoretical analyses. The ultraviolet-visible laser absorption-scattering (LAS) imaging technique is employed to quantitively determine the spray/mixture properties of the diesel spray injected by a hole-type injector, in terms of spray tip penetration and spatial concentration distributions of liquid and vapor phase. The structure of evaporating spray is obtained and analyzed. Based on the penetration correlations in the literature, a non-dimensional analysis of the spray tip penetration data is carried out. The results indicate that a self-similar state of the evaporating fuel spray is achieved.
Journal Article

Characteristics of Flat-Wall Impinging Spray Flame and Its Heat Transfer under Diesel Engine-Like Condition: Effects of Injection Pressure, Nozzle Hole Diameter and Impingement Distance

2019-12-19
2019-01-2183
Substantial amount of fuel energy input is lost by heat transfer through combustion chamber walls in the internal combustion engines. Thus, these heat losses account for reduced thermal efficiency, in that spray-wall impingement plays a crucial role in Direct Injection diesel engines. The objective of this study is to investigate the mechanism of the heat transfer from the spray/flame to the impinging wall under small diesel engine-like condition and how the spray characteristics are affected with regards to effect of injection pressure, nozzle hole diameter and impingement distance. The experiment results showed that injection pressure was predominant factor on spray-wall heat transfer.
Technical Paper

Characteristics of Flat-Wall Impinging Spray Flame and Its Heat Transfer under Small Diesel Engine-Like Condition

2017-11-05
2017-32-0032
Heat loss is more critical for the thermal efficiency improvement in small size diesel engines than large-size diesel engines. More than half of total heat energy in the internal-combustion engine is lost by cooling through the cylinder walls to the atmosphere and the exhaust gas. Therefore, the new combustion concept is needed to reduce losses in the cylinder wall. In a Direct Injection (DI) diesel engine, the spray behavior, including spray-wall impingement has an important role in the combustion development to reduce heat loss. The aim of this study is to understand the mechanism of the heat transfer from the spray and flame to the impinging wall. Experiments were performed in a constant volume vessel (CVV) at high pressures and high temperatures. Fuel was injected using a single-hole injector with a 0.133 mm diameter nozzle. Under these conditions, spray evaporates, then burns near the wall. Spray/flame behavior was investigated with a high-speed video camera.
Technical Paper

Characteristics of Nozzle Internal Flow and Near-Field Spray of Multi-Hole Injectors for Diesel Engines

2015-09-01
2015-01-1920
The combustion process, emission formation and the resulting engine performance in a diesel engine are well known to be governed mainly by spray behaviors and the consequent mixture formation quality. One of the most important factors that affect the spray development is the nozzle configuration. Originally, single-hole diesel injector is usually applied in fundamental research to provide insights into the spray characteristics. However, the spray emerging from a realistic multi-hole injector approaches the practical engine operation situation better. Meanwhile, previous research has shown that the reduced nozzle hole diameter is effective for preparing more uniform mixture. In the current paper, a study about the effects of nozzle configuration and hole diameter on the internal flow and spray properties was conducted in conjunction with a series of experimental and computational methods.
Technical Paper

Characterization of Mixture Formation Processes in D.I. Gasoline Sprays by the Laser Absorption Scattering (LAS) Technique - Effect of Injection Conditions

2003-05-19
2003-01-1811
Mixture formation processes play a vital role on the performance of a D.I. Gasoline engine. Quantitative measurement of liquid and vapor phase concentration distribution in a D.I. gasoline spray is very important in understanding the mixture formation processes. In this paper, an unique laser absorption scattering (LAS) technique was employed to investigate the mixture formation processes of a fuel spray injected by a D.I. gasoline injector into a high pressure and temperature constant volume vessel. P-xylene, which is quite suitable for the application of the LAS technique, was selected as the test fuel. The temporal variations of the concentration distribution of both the liquid and vapor phases in the spray were quantitatively clarified. Then the effects of injection pressure and quantity on the concentration distributions of both the liquid and vapor phases in the spray were analyzed.
Technical Paper

Characterization of Mixture Formation in Split-Injection Diesel Sprays via Laser Absorption-Scattering (LAS) Technique

2001-09-24
2001-01-3498
Experimental results of a diesel engine have shown that using split-injection can reduce the NOx and particulate emissions. For understanding the mechanism of emissions reduction, mixture formation in split-injection diesel sprays was characterized in the present paper. A dual-wavelength laser absorption-scattering (LAS) technique was developed by use of the second harmonic (532nm) and the fourth harmonic (266nm) of a pulsed Nd:YAG laser as the incident light and dimethylnaphthalene (DMN) as the test fuel. By applying this technique, imaging was made of DMN sprays injected into a high-temperature and high-pressure constant volume vessel by a single-hole nozzle incorporated in a common rail injection system for D.I. diesel engine. The line-of-sight optical thickness of both fuel vapor and droplets in the sprays was yielded from the sprays images.
Technical Paper

Combustion Performance of Methane Fermentation Gas with Hydrogen Addition under Various Ignition Timings

2022-01-09
2022-32-0043
Hydrogen (H2) addition is widely used for natural gas combustion to improve the engine efficiency. However, less attention was paid on the various ignition timings for the maximum brake torque (MBT) and brake thermal efficiency (BTE). In order to check the ignition timing effect, experiments were performed in a spark ignition engine with engine speed fixed on 1500 revolutions per minute (rpm). Firstly, CH4 was only used for combustion with excess air ratio (λ) changing from 0.8 to 1.4. Then, co-combustion of 50 vol% CH4 and 50 vol% CO2 was checked to simulate methane fermentation gas. Finally, H2 was added with volume percentage varying from 5% to 20%. Among these discussions, torque, brake mean effective pressure (BMEP), BTE and cylinder pressure were evaluated. Based on the results, high efficiency can be achieved by advancing the ignition timing with H2 addition at λ=1.4. However, with H2 addition, the ignition timing should be retarded to obtain higher BTE.
Technical Paper

Cross-Flow Effect on Behavior of Fuel Spray Injected by Hole-Type Nozzle for D.I. Gasoline Engine

2013-10-14
2013-01-2553
Spray characteristics are of great importance to achieve fuel economy and low emissions for a D.I. gasoline engine. In this study, the characteristics of the fuel spray as well as its interaction with a cross-flow were investigated. The fuel was injected by a VCO injector into an optically accessible rectangular wind tunnel under the normal temperature and pressure, in which the direction of the injection was perpendicular to the direction of the cross-flow. The velocity of the cross-flow varied from 0 to 10 m/s while the injection pressure was 5 and 10 MPa. With using the high speed video camera and the PIV system, the spray profile, velocity distribution and the penetration distance were measured. The lower penetration distance can be obtained with the lower injection pressure and the increased velocity of the cross-flow, however the injected fuel expands along the direction of the cross-flow, which indicates that spray atomization and mixing of fuel and air are enhanced.
Technical Paper

Effect of Cross-Flow Velocity on Fuel Adhesion of Flat-Wall Impinging Spray under Triple Stage Split Injection

2023-09-29
2023-32-0013
The high injection pressure and small cylinder volume of direct injection spark ignition (DISI) engines can result in flat-wall wetness on the surface of the piston, increasing fuel consumption and pollutant emissions. The characteristics of microscopic fuel adhesion are observed using refractive index matching (RIM). Fuel adhesion characteristics after wall impingement are evaluated with various cross-flow velocities under triple stage injection conditions. The results indicate that cross-flow has a beneficial effect on the diffusion of fuel spray. Average fuel adhesion thickness decreases with an increase in cross-flow velocities. Furthermore, cross-flow promotes the evaporation of fuel adhesion, which leads to a reduction in the fuel adhesion mass/mass ratio. The improvement of injection strategy has guidance on low-carbon future.
Journal Article

Effect of Ethanol Ratio on Ignition and Combustion of Ethanol-Gasoline Blend Spray in DISI Engine-Like Condition

2015-04-14
2015-01-0774
To reduce carbon dioxide emission and to relieve the demand of fossil fuels, ethanol is regarded as one of the most promising alternative fuels for gasoline. Recently, using ethanol in the state-of-the-art gasoline engine, direct-injection spark-ignition (DISI) engine, has become more attention by researchers due to less knowledge of the ignition and combustion processes in that engine. In this study, different ethanol-gasoline blended fuels, E0 (100% gasoline), E85 (85% ethanol and 15% gasoline mixed in volume basis) and E100 (100% ethanol) were injected by a valve-covered-orifice (VCO) hole-type nozzle. The experimental environment was set to the condition similar with the near top dead center (TDC) in DISI engine. The high-speed imaging of shadowgraph, OH* chemiluminescence and flame natural luminosity were used to clarify the characteristics of the ignition process, flame development and propagation.
Journal Article

Effect of Injection Pressure on Ignition, Flame Development and Soot Formation Processes of Biodiesel Fuel Spray

2010-09-28
2010-32-0053
The effect of injection pressure ranging from 100 to 300MPa on the ignition, flame development and soot formation characteristics of biodiesel fuel spray using a common rail injection system for direct injection (D.I.) diesel engine was investigated. Experiments were carried out in a constant volume vessel under conditions similar to the real engine condition using a single hole nozzle. Biodiesel fuels from two sources namely; palm oil (BDFp) and cooked oil (BDFc) with the commercial JIS#2diesel fuel were utilized in this research. The OH chemiluminescence technique was used to determine the ignition and the lift-off length of the combusting flame. The natural luminosity technique was applied to study the flame development and the two color pyrometry was applied for the soot formation processes. Ignition delay decreased as the injection pressure progressed from 100 to 300MPa. This was as a result of the enhanced mixing achieved at higher injection pressures.
Technical Paper

Effects of Group-hole Nozzle Specifications on Fuel Atomization and Evaporation of Direct Injection Diesel Sprays

2007-07-23
2007-01-1889
The group-hole nozzle concept is regarded as a promising approach to facilitate better fuel atomization and evaporation for direct injection diesel engine applications. In the present work, the spray and mixture properties of group-hole nozzle with close, parallel or a small included angle orifices were investigated experimentally by means of the ultraviolet-visible laser absorption-scattering (LAS) imaging technique, in comparison with the conventional single-hole nozzle. Three series of group-hole nozzles were designed to investigate the effect of group-hole nozzle specification while varying the included angle and interval between the orifices. The results suggested that: 1) Group-hole nozzle with very close, parallel orifices presents the similar spray characteristics with those of the single-hole nozzle.
X