Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

An Overview of the EDSMAC4 Collision Simulation Model

1999-03-01
1999-01-0102
The EDSMAC simulation model has been in widespread use by vehicle safety researchers since its introduction in 1985. Several papers have been published that describe the model and provide validations of its use. In 1997, the collision and vehicle dynamics models were extended significantly. The main control logic was also extended and generalized. The resulting model was named EDSMAC4. This paper describes the EDSMAC4 model with particular attention to the extensions to the original algorithms. The paper also provides a validation of the new model by direct comparison to staged collision experiments and the results from the previous EDSMAC model.
Technical Paper

An Overview of the HVE Developer's Toolkit

1994-03-01
940923
A substantial programming effort is required to develop a human or vehicle dynamics simulator. More than half of this effort is spent designing and programming the user interface (the means by which the user supplies program input and views program output). This paper describes a pre-programmed, 3-dimensional (3-D), input/output window-type interface which may be used by developers of human and vehicle dynamics programs. By using this interface, the task of input/output programming is reduced by approximately 50 percent, while simultaneously providing a more robust interface. This paper provides a conceptual overview of the interface, as well as specific details for writing human and vehicle dynamics programs which are compatible with the interface. Structures are provided for the human, vehicle and environment models. Structures are also provided for events, interface variables, and the output data stream.
Technical Paper

An Overview of the HVE Vehicle Model

1995-02-01
950308
Developers of vehicle dynamics simulation software inherently use a mathematical/physical model to represent the vehicle. This paper describes a pre-programmed, object-oriented vehicle model for use in vehicle dynamics simulations. This vehicle model is included as part of an integrated simulation environment, called HVE (Human-Vehicle-Environment), described in previous research [1,2] *. The current paper first provides a general overview of the HVE user and development environments, and then provides detailed specifications for the HVE Vehicle Model. These specifications include definitions for model parameters (supported vehicle types; vehicle properties, such as dimensions, inertias, suspensions; tire properties, such as dimensions and inertias, mu vs slip, cornering and camber stiffnesses; driver control systems, such as engine, transmission/differential, brakes and steering; restraint systems, such as belts and airbags).
Technical Paper

Case Studies Involving the Use and Non-Use of Seatbelts

1986-11-01
861091
This paper presents the case study results of several actual motor vehicle accidents which occurred in the western U.S. Each case was analyzed to determine the characteristics of impact to the vehicle and the resulting occupant injuries. The most frequent injury was facial laceration from impacting the windshield. The main benefit of restraint systems lies in their ability to reduce or prevent contact between the occupant and the interior during the crash.
Technical Paper

Differences Between EDVDS and Phase 4

1999-03-01
1999-01-0103
Motor vehicle safety researchers have used the Phase 4 vehicle simulation model for several years. Because of its popularity and ability to simulate the 3-dimensional dynamics of commercial vehicles (large trucks and truck tractors towing up to three trailers), the Phase 4 model was ported to the HVE simulation platform. The resulting model is called EDVDS (Engineering Dynamics Vehicle Dynamics Simulator). This paper describes the procedures used in porting Phase 4 to the HVE platform. As a result of several assumptions made during the development of Phase 4, the port to EDVDS required substantial changes. The most significant modeling difference is the removal of the small angle assumption, allowing researchers to study complete vehicle rollover. Also significant is EDVDS’s use of HVE’s Get Surface Info () function, allowing the vehicles’ tires to travel over any 3-D terrain of arbitrary complexity. These and other changes in the model are described in the paper.
Technical Paper

SIMON: A New Vehicle Simulation Model for Vehicle Design and Safety Research

2001-03-05
2001-01-0503
SIMON is a new vehicle dynamic simulation model. Applications for SIMON include single- and multi-unit vehicle handling simulation in severe limit maneuvers (including rollovers) and 3-dimensional environments. Applications also include vehicle-to-vehicle and vehicle-to-barrier collisions. This paper provides the technical background for the SIMON engineering model. The 3-dimensional equations of motion used by the model are presented and explained in detail. The calculations for suspension, tire, collision, aerodynamic and inter-vehicle connection forces and moments are also developed. The integration of features available in the HVE Simulation Environment, such as DyMESH, the Driver Model, Brake Designer and Steer Degree of Freedom, is also explained. Finally, assumptions and limitations of the model are presented.
Technical Paper

The DyMesh Method for Three-Dimensional Multi-Vehicle Collision Simulation

1999-03-01
1999-01-0104
Two-dimensional collision simulation has been used successfully for two decades. Two- and three-dimensional momentum methods are also well known. Three-dimensional collision simulation can be accomplished using finite element methods, but this is not practical for interactive collision simulation due to long mesh generation times and run times which may take several days. This paper presents an approach to collision simulation using a new algorithm to track interacting vehicle surface meshes. Three-dimensional forces due to vehicle crush are taken into account during the solution and the damage profile is visualized at run time. The new collision algorithm is portable in that it takes as input vehicle material properties and surface geometries and calculates from their interaction three-dimensional forces and moments at the vehicle center of gravity. Intervehicle mesh forces may be calculated from a user-defined force-deflection relationship. The derivation is discussed.
Technical Paper

The Simulation of Driver Inputs Using a Vehicle Driver Model

2000-03-06
2000-01-1313
Traditional vehicle simulations use two methods of modeling driver inputs, such as steering and braking. These methods are broadly categorized as “Open Loop” and “Closed Loop”. Open loop methods are most common and use tables of driver inputs vs time. Closed loop methods employ a mathematical model of the driving task and some method of defining an attempted path for the vehicle to follow. Closed loop methods have a significant advantage over open loop methods in that they do not require a trial-and-error approach normally required by open loop methods to achieve the desired vehicle path. As a result, closed loop methods may result in significant time savings and associated user productivity. Historically, however, closed loop methods have had two drawbacks: First, they require user inputs that are non-intuitive and difficult to determine. Second, closed loop methods often have stability problems.
Technical Paper

Three-Dimensional Reconstruction and Simulation of Motor Vehicle Accidents

1996-02-01
960890
This paper describes the use of 3-D technologies for reconstructing and simulating motor vehicle accidents involving humans (occupants and pedestrians) and vehicles (passenger cars, pickups, vans, multi-purpose vehicles, on-highway trucks and vehicle-trailers). All examples involve three-dimensional environments, including road crowns, hills, curbs and embankments - any geometrical feature resulting in three-dimensional motion. Various reconstruction and simulation models are illustrated. The features and limitations of each model are addressed. Issues involving data requirements, preparation of 3-D models and presentation techniques (numeric, graphic and video animation) are also explored.
Technical Paper

Why Simulation? An Interesting Case Study

2016-04-05
2016-01-1484
This paper presents an example application for vehicle dynamics simulation software. This example investigates the validity of the vehicle motion presented in the famous car chase scene from the 1968 movie Bullitt. In this car chase, a 1968 Ford Mustang, driven by Det. Frank Bullitt of the San Francisco Police Department, is chasing a criminal driving a 1968 Dodge Charger through the streets of the Russian Hill district of San Francisco. The purpose of the simulation was to reconstruct the chase scene to determine the level of realism in the movie, in terms of conformance to Newton’s Laws of motion. To produce the simulation, several city blocks of the pertinent area of the city were surveyed and exemplar vehicles were measured and inspected. Three-dimensional computer models of the scene and vehicles were built. The movie footage was analyzed to determine vehicle speeds and driver inputs. The event was then simulated using three-dimensional vehicle dynamics simulation software.
X