Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Standard

Chemical Compositions of SAE Alloy Steels

2009-01-27
CURRENT
J404_200901
In 1941, the SAE Iron and Steel Division in collaboration with the American Iron and Steel Institute (AISI) made a major change in the method of expressing composition ranges for the SAE steels. The plan, as now applied, is based in general on narrower ladle analysis ranges plus certain product (check) analysis allowances on individual samples, in place of the fixed ranges and limits without tolerances formerly provided for carbon and other elements in SAE steels (reference SAE J408). ISTC Division 1 has developed a procedure which allows for the maintenance of the grade list in this SAE Standard. This will involve conducting an industry-wide survey to solicit input. This survey will be conducted at a frequency deemed necessary by the technical committee. Criteria have been established for the addition to or deletion of grades from the grade table.
Standard

INFRARED TESTING

1991-02-01
HISTORICAL
J359_199102
The scope of this SAE Information Report is to provide general information relative to the nature and use of infrared techniques for nondestructive testing. The document is not intended to provide detailed technical information, but will serve as an introduction to the theory and capabilities of infrared testing and as a guide to more extensive references.
Standard

Infrared Testing

2018-01-09
CURRENT
J359_201801
The scope of this SAE Information Report is to provide general information relative to the nature and use of infrared techniques for nondestructive testing. The document is not intended to provide detailed technical information, but will serve as an introduction to the theory and capabilities of infrared testing and as a guide to more extensive references.
Standard

LIQUID PENETRANT TEST METHODS

1991-03-01
HISTORICAL
J426_199103
The scope of this SAE Information Report is to supply the user with sufficient information so that he may decide whether liquid penetrant test methods apply to his particular inspection problem. Detailed technical information can be obtained by referring to Section 2.
Standard

Liquid Penetrant Test Methods

2018-01-09
CURRENT
J426_201801
The scope of this SAE Information Report is to supply the user with sufficient information so that he may decide whether liquid penetrant test methods apply to his particular inspection problem. Detailed technical information can be obtained by referring to Section 2.
Standard

MAGNETIC PARTICLE INSPECTION

1991-03-01
HISTORICAL
J420_199103
The scope of this SAE Information Report is to provide general information relative to the nature and use of magnetic particles for nondestructive testing. The document is not intended to provide detailed technical information, but will serve as an introduction to the theory and capabilities of magnetic particle testing, and as a guide to more extensive references.
Standard

Magnetic Particle Inspection

2018-01-10
CURRENT
J420_201801
The scope of this SAE Information Report is to provide general information relative to the nature and use of magnetic particles for nondestructive testing. The document is not intended to provide detailed technical information, but will serve as an introduction to the theory and capabilities of magnetic particle testing, and as a guide to more extensive references.
Standard

Standard Sheet Steel Thickness and Tolerances

2024-03-04
CURRENT
J1058_202403
This SAE Recommended Practice provides an orderly series for designating the thickness of unocated and coated hot-rolled and cold-rolled sheet and strip. This document also provides methods for specifying thickness tolerances.
Standard

Standard Sheet Steel Thickness and Tolerances

2015-04-28
HISTORICAL
J1058_201504
This SAE Recommended Practice provides an orderly series for designating the thickness of unocated and coated hot-rolled and cold-rolled sheet and strip. This document also provides methods for specifying thickness tolerances.
Standard

Standardized Dent Resistance Test Procedure

2015-04-28
CURRENT
J2575_201504
These test procedures were developed based upon the knowledge that steel panel dent resistance characteristics are strain rate dependent. The “quasi-static” section of the procedure simulates real world dent phenomena that occur at low indenter velocities such as palm-printing, elbow marks, plant handling, etc. The indenter velocity specified in this section of the procedure is set to minimize material strain rate effects. The dynamic section of the procedure simulates loading conditions that occur at higher indenter velocities, such as hail impact, shopping carts, and door-to-door parking lot impact. Three dent test schedules are addressed in this procedure. Schedule A is for use with a specified laboratory prepared (generic) panel, Schedule B is for use with a formed automotive outer body panel or assembly, and Schedule C addresses end product or full vehicle testing.
Standard

ULTRASONIC INSPECTION

1991-03-01
HISTORICAL
J428_199103
The scope of this SAE Information report is to provide basic information on ultrasonics, as applied in the field of nondestructive inspection. References to detailed information are listed in Section 2.
Standard

Ultrasonic Inspection

2018-01-09
CURRENT
J428_201801
The scope of this SAE Information report is to provide basic information on ultrasonics, as applied in the field of nondestructive inspection. References to detailed information are listed in Section 2.
Standard

ZINC DIE CASTING ALLOYS

1989-01-01
HISTORICAL
J469_198901
Because of the drastic chilling involved in die casting and the fact that the solid solubilities of both aluminum and copper in zinc change with temperature, these alloys are subject to some aging changes, one of which is a dimensional change. Both of the alloys undergo a slight shrinkage after casting, which at room temperature is about two-thirds complete in five weeks. It is possible to accelerate this shrinkage by a stabilizing anneal, after which no further changes occur. The recommended stabilizing anneal is 3 to 6 h at 100 °C (212 °F), or 5 to 10 h at 85 °C (185 °F), or 10 to 20 h at 70 °C (158 °F). The time in each case is measured from the time at which the castings reach the annealing temperature. The parts may be air cooled after annealing. Such a treatment will cause a shrinkage (0.0004 in per in) of about two-thirds of the total, and the remaining shrinkage will occur at room temperature during the subsequent few weeks.
Standard

Zinc Die Casting Alloys

2017-12-20
CURRENT
J469_201712
Because of the drastic chilling involved in die casting and the fact that the solid solubilities of both aluminum and copper in zinc change with temperature, these alloys are subject to some aging changes, one of which is a dimensional change. Both of the alloys undergo a slight shrinkage after casting, which at room temperature is about two-thirds complete in five weeks. It is possible to accelerate this shrinkage by a stabilizing anneal, after which no further changes occur. The recommended stabilizing anneal is 3 to 6 h at 100 °C (212 °F), or 5 to 10 h at 85 °C (185 °F), or 10 to 20 h at 70 °C (158 °F). The time in each case is measured from the time at which the castings reach the annealing temperature. The parts may be air cooled after annealing. Such a treatment will cause a shrinkage (0.0004 in per in) of about two-thirds of the total, and the remaining shrinkage will occur at room temperature during the subsequent few weeks.
X