Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Bus Cabin Noise Prediction of Large HVAC System Using Total Noise Method

2023-05-08
2023-01-1126
HVAC system design has an accountability towards acoustic comfort of passengers of a vehicle. Owing to larger cabin volume of a bus, multiple air blowers have to be installed to ensure comfort of passengers. Such multiple blowers produce significant flow induced noise inside the cabin. For commercial success, it becomes essential to predict intensity of such a flow induced noise at very early stages in product development. Conventionally sliding mesh based CFD approach is deployed to predict flow and turbulence noise around each blower. However due to complexity, this method becomes computationally intensive resulting in cost and time inefficiency. Hence it is desirable to innovate around an alternative rapid, reliable prediction method, which ensures quick turnaround of prediction.
Technical Paper

Comprehensive Assessment of Driver Monitoring System for Commercial Vehicle Applications Using Innovative Lab Testing Approach

2024-01-16
2024-26-0027
The commercial vehicle sector (especially trucks) has major role in economic growth of a nation. With improving infrastructure, increasing number of commercial vehicles and growing amount of Vulnerable Road Users (VRUs) on roads, accidents are also increasing. As per RASSI (Road Accident Sampling System India) FY2016-21 database, commercial vehicles are involved in 43% of total accidents on Indian roads. One of the major causes of these accidents is Driver Drowsiness and Inattention (DDI) (approx. 10% contribution in total accidents). This paper describes novel driver-in-loop performance assessment methodology for comprehensive verification of Driver Monitoring System (DMS) for commercial vehicle application. Novelty lies in specification of test subjects, driving styles and variety of road traffic scenarios for verification of DMS system. Test setup is made modular to cater to different platform environments (Heavy, Intermediate, Light) with minor modifications.
Technical Paper

Global COR iDOE Methodology: An Efficient Way to Calibrate Medium & Heavy Commercial Vehicle Engine Emission and Fuel Consumption Calibration

2017-01-10
2017-26-0032
Modern day diesel engines use systems like Exhaust Gas Recirculation (EGR), Variable Geometric Turbo Charger (VGT), inlet throttle for air regulation, multiple injection strategies, high pressure rail systems for fuel regulation to optimize the combustion for meeting the strict emission and fuel consumption demands. Torque based ECU structures which are commonly used for diesel engines require a large amount of calibration work. Conventional manual methods for emission and fuel consumption optimization (Full factorial or Line search method) results in increased test bed usage and it is almost impossible to use these methods as the number of parameters to optimize are very high. The conventional DoE tests have been limited by the necessity of calibration engineer’s expertise and manual prescreening of test points to be within thermal & mechanical limits of engine systems. This subsequently leads to excessive screening of variables; which is time consuming.
Technical Paper

Multi Axis Fatigue Test of Lift Axle Assembly through Real Time Simulation Abstract

2021-09-22
2021-26-0486
This paper discusses the test setup and methodology required to validate complete lift axle assembly for simulating the real time test track data. The correlation of rig vs track is discussed. The approach for reduction of validation time by eliminating few of the non-damaging tracks/events, its correlation with real life condition is discussed, and details are presented. With increased competition, vehicle development time has reduced drastically in recent past. Bench test procedure using accelerated test cycle discussed in this paper will help to reduce development time and cost. Process briefed in this paper can also be used for similar test specification for other structural parts or complete suspension system of heavy commercial vehicles.
Technical Paper

Study of Key Attributes of Sustainability of Automobile Solutions in India

2022-10-05
2022-28-0313
The changing mobility landscape of India reveals that the erstwhile transport modes of the 20th century i.e., railways and road buses are making way for airlines, personal vehicles, shared mobility, metro rails. Rapid technological changes, stricter regulations, new transport cultures autonomous, connected, electric and shared (ACES), state-of-the-art and environmental concerns are shaping up the eco-system for automobiles. Despite these challenges roadways and automobiles will continue to be most prominent solution in India for future. But for that, the automobile sector should be agile, innovative, and adaptable to changing eco-system, vigilant to thwart threat of alternate mobility solutions and must provide sustainable solutions for the future. The purpose of this paper to evaluate various mobility solutions, ascertain prominence of upcoming automobile solutions and their sustainability for future in India.
Technical Paper

Test Methodology with Shock Loads and Fatigue Limit of Press Fitted Gears on Shaft

2013-11-27
2013-01-2794
In case of new generation of commercial vehicles, three shaft transmissions are designed with press fitted gears on counter shaft. It allows user to save the cost of transmission manufacturing by considerable amount. In case of heavy commercial vehicles, which are being used in abusive conditions such as mining and off-road applications, it becomes absolutely necessary to ensure that the gears press fit should withstand the continuous loads and impact loads. There are design guidelines available to ensure proper fit and torque carrying capacity between the mating parts. Still, there are gear slippage, shaft and gear breakage failures in the field. In this scenario, there is a need to develop bench test procedure which will capture such failures in the prototype stage. Looking at the failures in the field, it is necessary to capture all above hidden failures in design validation phase.
X