Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Comparative Analysis of Truck Ride Comfort of 4 Degree of Freedom Rigid-Elastic Model with 2 Degree of Freedom Rigid Model

2015-04-14
2015-01-0615
In order to study the influence of body flexibility on the truck ride comfort, a 4 DOF half vibration model of truck based on the motion synthesis between rigid body and body flexibility is established using elastic beam theory of equal section with both free ends. At the same time, a corresponding 2 DOF rigid vibration model is also built. The frequency response functions of system and response variables of two models are derived based on front wheel. The power spectral densities and the root mean square values of body acceleration, dynamic deflections and relative dynamic loads are obtained. By comparing the simulation results of rigid-elastic model and rigid model, it shows that body flexibility has a great impact on truck ride comfort and it cannot be ignored.
Technical Paper

Optimization of Suspension System of Self-Dumping Truck Using TOPSIS-based Taguchi Method Coupled with Entropy Measurement

2016-04-05
2016-01-1385
This study presents a hybrid optimization approach of TOPSIS-based Taguchi method and entropy measurement for the determination of the optimal suspension parameters to achieve an enhanced compromise among ride comfort, road friendliness which means the extent of damage exerted on the road by the vehicles, and handling stabilities of a self-dumping truck. Firstly, the full multi-body dynamic vehicle model is developed using software ADAMS/Car and the vehicle model is then validated through ride comfort road tests. The performance criterion for ride comfort evaluation is identified as root mean square (RMS) value of frequency weighted acceleration of cab floor, while the road damage coefficient is used for the evaluation of the road-friendliness of a whole vehicle. The lateral acceleration and roll angle of cab were defined as evaluation indices for handling stability performance.
Technical Paper

Structure Optimization and Interior Noise Reduction of Commercial Vehicle Cab

2012-09-24
2012-01-1928
In order to improve ride comfort and reduce interior noise of commercial vehicles, modal sensitivity analysis and optimization design of a commercial vehicle cab was carried out, which increased the first natural frequency of the optimized cab by 23.96%. The result of cab modal test verified the correctness of the finite element model and the effectiveness of the improving method. The structure-acoustic coupling model of the cab was established, and the acoustic response of the coupled sound field was predicted. The sound pressure level of the optimized cab was reduced. In comparison of the optimized cab with the original one, the optimization scheme was confirmed to be effective and reasonable.
Technical Paper

Study on the Influence of Different Factors on Heavy Truck Ride Comfort

2016-04-05
2016-01-0440
The ride comfort of heavy trucks is related to many factors, which include vehicle operating scenarios and vehicle structure parameters. An investigation of the influence of different factors on the ride comfort of heavy trucks was conducted. Based on the elastic theory of a uniform Euler-Bernoulli beam with both ends free, a 6 degree of freedom (DOF) half rigid-elastic vibration model of the vertical dynamic response was developed. The rigid-elastic model is more suitable to describe the actual movement of heavy trucks. The DOFs include vertical displacements of the body and each of two axles, the pitch displacement of the body, and the first and second order bending displacements of the body. The root mean square (RMS) values of body accelerations, dynamic deflections and relative dynamic loads form the evaluation index. Based on the rigid-elastic model, the influence of different factors on the ride comfort of heavy trucks is analyzed in the frequency domain.
Technical Paper

Temperature Compensation Control Strategy of Assist Mode for Hydraulic Hub-Motor Drive Vehicle

2020-04-21
2020-01-5046
Based on the traditional heavy commercial vehicle, hydraulic hub-motor drive vehicle (HHMDV) is equipped with a hydraulic hub-motor auxiliary drive system, which makes the vehicle change from the rear-wheel drive to the four-wheel drive to improve the traction performance on low-adhesion road. In the typical operating mode of the vehicle, the leakage of the hydraulic system increases because of the oil temperature rising, this makes the control precision of the hydraulic system drop. Therefore, a temperature compensation control strategy for the assist mode is proposed in this paper. According to the principle of flow continuity, considering the loss of the system and the expected wheel speed, the control strategy of multifactor target pump displacement based on temperature compensation is derived. The control strategy is verified by the co-simulation platform of MATLAB/Simulink and AMESim.
Technical Paper

Virtual Simulation Research on Vehicle Ride Comfort

2006-10-31
2006-01-3499
In this paper, a computer model of a multi-purpose vehicle (MPV) is built to study vehicle ride comfort by multi-body system dynamic theory. Virtual test rigs are developed to perform natural body frequency tests and random road input tests on the complete vehicle multi-body dynamic model. By comparing simulation results with field test results, the accuracy of the model is validated and the feasibility of virtual test rigs is established.
X