Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

145 - 210 Horsepower Agricultural Tractor Noise Reduction Program

1993-09-01
932434
This paper summarizes the techniques and guidelines which were used to reduce the driver perceived noise level of a 145-210 HP series of agricultural tractors. Graphs of case study test results and comments on subjective noise quality are provided to guide the acoustic novice through the complexities of the vehicle sound environment in a methodical problem solving format.
Technical Paper

2-Stroke Engine Options for Automotive Use: A Fundamental Comparison of Different Potential Scavenging Arrangements for Medium-Duty Truck Applications

2019-01-15
2019-01-0071
The work presented here seeks to compare different means of providing scavenging systems for an automotive 2-stroke engine. It follows on from previous work solely investigating uniflow scavenging systems, and aims to provide context for the results discovered there as well as to assess the benefits of a new scavenging system: the reverse-uniflow sleeve-valve. For the study the general performance of the engine was taken to be suitable to power a medium-duty truck, and all of the concepts discussed here were compared in terms of indicated fuel consumption for the same cylinder swept volume using a one-dimensional engine simulation package. In order to investigate the sleeve-valve designs layout drawings and analysis of the Rolls-Royce Crecy-type sleeve had to be undertaken.
Technical Paper

3D Aeroacoustics Simulation of a Complete Bus Exhaust System

2012-11-25
2012-36-0632
Health related problems in over populated areas are a major concern and as such, there are specific legislations for noise generated by transport vehicles. In diesel powered commercial vehicles, the source for noise are mainly related to rolling, transmission, aerodynamics and engine. Considering internal combustion engine, three factors can be highlighted as major noise source: combustion, mechanical and tailpipe. The tailpipe noise is considered as the noise radiated from the open terminations of intake and exhaust systems, caused by both pressure pulses propagating to the open ends of the duct systems, and by vortex shedding as the burst leaves the tailpipe (flow generated noise). In order to reduce noise generated by vehicles, it is important to investigate the gas interactions and what can be improved in exhaust line design during the product development phase.
Journal Article

3D-CFD-Study of Aerodynamic Losses in Compressor Impellers

2018-07-05
Abstract Due to the increasing requirements for efficiency, the wide range of characteristics and the improved possibilities of modern development and production processes, compressors in turbochargers have become more individualized in order to adapt to the requirements of internal combustion engines. An understanding of the working mechanisms as well as an understanding of the way that losses occur in the flow allows a reduced development effort during the optimization process. This article presents three-dimensional (3D) Computational Fluid Dynamics (CFD) investigations of the loss mechanisms and quantitative calculations of individual losses. The 3D-CFD method used in this article will reduce the drawbacks of one-dimensional calculation as far as possible. For example, the twist of the blades is taken into account and the “discrete” method is used for loss calculation instead of the “average” method.
Technical Paper

48 V Diesel Hybrid - Advanced Powertrain Solution for Meeting Future Indian BS 6 Emission and CO2 Legislations

2019-01-09
2019-26-0151
The legislations on emission reduction is getting stringent everywhere in the world. India is following the same trend, with Government of India (GOI) declaring the nationwide implementation of BS 6 legislation by April 2020 and Real Driving Emission (RDE) Cycle relevant legislation by 2023. Additionally GOI is focusing on reduction of CO2 emissions by introduction of stringent fleet CO2 targets through CAFE regulation, making it mandatory for vehicle manufacturers to simultaneously work on gaseous emissions and CO2 emissions. Simultaneous NOx emission reduction and CO2 reduction measures are divergent in nature, but with a 48 V Diesel hybrid, this goal can be achieved. The study presented here involves arriving at the right future hybrid-powertrain layout for a Sports Utility Vehicle (SUV) in the Indian scenario to meet the future BS 6 and CAFÉ legislations. Diesel engines dominate the current LCV and SUV segments in India and the same trend can be expected to continue in future.
Journal Article

48V Exhaust Gas Recirculation Pump: Reducing Carbon Dioxide with High-Efficiency Turbochargers without Increasing Engine-Out NOx

2021-08-23
Abstract Regulations limiting GreenHouse Gases (GHG) from Heavy-Duty (HD) commercial vehicles in the United States (US) and European Union will phase in between the 2024 and 2030 model years. These mandates require efficiency improvements at both the engine and vehicle levels, with the most stringent reductions required in the heaviest vehicles used for long-haul applications. At the same time, a 90% reduction in oxides of nitrogen (NOx) will be required as part of new regulations from the California Air Resources Board. Any technologies applied to improve engine efficiency must therefore not come at the expense of increased NOx emissions. Research into advanced engine architectures and components has identified improved turbomachine efficiency as one of the largest potential contributors to engine efficiency improvement. However this comes at the cost of a reduced capability to drive high-pressure Exhaust Gas Recirculation (EGR).
Technical Paper

5480 Reach Truck-A New Concept in Reach Track Design

1987-09-01
871651
The new 5480 Reach Truck, designed at Dynamic Industries, introduces a movable frame between the main frame and the telescopic boom. The use of this movable frame allows the usually fixed boom pivot to be elevated for greater lifting heights with smaller boom sections. By combining the motions of the boom and the movable frame, horizontal motion at the boom tip is possible without moving the truck. With the movable frame, the total machine height and length can be reduced for a given lifting goal. Another advantage of the movable frame is the ability to reach further below grade than is now possible in the industry. The 5480 Reach Truck has a maximum lift of 54 feet (16.5 meters) and can reach 24 feet (7.3 meters) below-grade.
Technical Paper

A 900 Ton Crawler Crane with 12’ × 12’ Main Boom Cross Section Disassembles for Truck Transport on the Interstate

1987-09-01
871666
The LTL-900 Transi-Lift crane features front and rear crawler-mounted load platforms connected with a hoist-supporting five foot diameter pipe section. The pin-together main boom is available in lengths up to 400 feet and completely disassembles for ease of transport to and from the jobsite. The crane requires three operators and can hoist, boom, swing and travel simultaneously with maximum loads. Upending, moving and setting large refinery vessels is facilitated by the mobility of the crawler-supported crane on unprepared surfaces. Up to 1000 tons of 36 ton concrete beams or equivalent are required as counterweight to develop the ANSI B30.5 approved capacities.
Technical Paper

A Band Variable-Inertia Flywheel Integrated-Urban Transit Bus Performance

1990-10-01
902280
By means of computer simulation, the potential of a Band Variable-Inertia Flywheel (BVIF) as an energy storage device for a diesel engine city bus is evaluated. Replacing both a fixed-inertia flywheel (FIF) and a continuously variable transmission (CVT), the BVIF is capable of accelerating a vehicle from rest to a nearly-constant speed, while recovering part of the kinetic energy normally dissipated through braking of the vehicle. The results are compared with that of conventionally-powered bus. A fuel saving of up to 30 percent is shown with the BVIF-integrated system. The regenerative braking system reduces brake wear by a factor of five in comparison with the conventional vehicle.
Technical Paper

A Basis for Estimating Mechanical Efficiency and Life of a Diesel Engine from its Size, Load Factor and Piston Speed

2011-09-13
2011-01-2211
Parameters like brake mean effective pressure, mean velocity of the piston, hardness of the wear surface, oil film thickness, and surface areas of critical wear parts are similar for all the diesel engines. The mean piston velocity at the rated speed is nearly the same for all the diesel engines. The mechanical efficiency normalized to an arbitrary brake mean effective pressure (bmep) is dependent on the size of the engine. The engine life seems to be proportional directly to the square of a characteristic dimension namely, cylinder bore of the engine and inversely to speed and load factor for engines varying widely in sizes and ratings.
Technical Paper

A Bus for Denver’s Mall

1981-11-01
811280
A unique shuttle bus is being constructed by Minicars, Inc., and Walter Vetter Karosserie-werk for Denver’s Transitway/Mall. The bus is designed for frequent stop, low speed service in a downtown pedestrian environment. It features a very low floor and multiple wide doors for rapid passenger boarding and deboarding. Two versions will be supplied for comparative evalation, a low noise diesel configuration and a battery-electric configuration. Either version can subsequently be converted to the alternative propulsion system.
Technical Paper

A Closed Cycle Simulation Model with Particular Reference to Two-Stroke Cycle Engines

1991-09-01
911847
A quasi-dimensional computer simulation model is presented to simulate the thermodynamic and chemical processes occurring within a spark ignition engine during compression, combustion and expansion based upon the laws of thermodynamics and the theory of equilibrium. A two-zone combustion model, with a spherically expanding flame front originating from the spark location, is applied. The flame speed is calculated by the application of a turbulent entrainment propagation model. A simplified theory for the prediction of in-cylinder charge motion is proposed which calculates the mean turbulence intensity and scale at any time during the closed cycle. It is then used to describe both heat transfer and turbulent flame propagation. The model has been designed specifically for the two-stroke cycle engine and facilitates seven of the most common combustion chamber geometries. The fundamental theory is nevertheless applicable to any four-stroke cycle engine.
Technical Paper

A Commercial Excavator: Analysis, Modelling and Simulation of the Hydraulic Circuit

2012-09-24
2012-01-2040
The paper addresses some aspects of an ongoing research on a commercial compact excavator. The interest is focused on the analysis and modelling of the whole hydraulic circuit that, beside a load sensing variable displacement pump, features a stack of nine proportional directional control valves modules of which seven are of the load sensing type. Loads being sensed are the boom swing, boom, stick and bucket, right and left track motors and work tools; instead, the blade and the turret swing users do not contribute to the load sensing signal. Of specific interest are the peculiarities that were observed in the stack. In fact, to develop an accurate AMESim modelling, the stack was dismantled and all modules analysed and represented in a CAD environment as 3D parts. The load sensing flow generation unit was replaced on the vehicle by another one whose analysis and modelling have been developed using available design and experimental data.
Technical Paper

A Compact Cooling System (CCS™): The Key to Meet Future Demands in Heavy Truck Cooling

2001-05-14
2001-01-1709
To meet future needs for heavy truck cooling, a novel high performance radial compact cooling system (CCS) was developed. Measurements with a prototype system were conducted in a component wind tunnel and with truck-installed systems in a climatic vehicular wind tunnel. The CSS is compared to conventional axial and side-by-side systems. In comparison with a conventional axial system, the performance per unit volume of the CCS is 42% higher, the noise level is about 6 dB lower and the power consumption of the radial fan is 70% of the axial fan leading to significant savings in fuel consumption.
Technical Paper

A Comparative Study between Abrasion Techniques to Improve the Adhesion of Rubber and Metal Bond for Commercial Vehicle Applications

2021-09-22
2021-26-0253
Engine mounts are an integral part of the vehicle that helps in reducing the vibrations generated from the engine. Engine mounts require a simple yet complicated amalgamation of two very different materials, steel and rubber. Proper adhesion between the two is required to prevent any part failure. Therefore, it becomes important that a comprehensive study is done to understand the mating phenomenon of both. A good linking between rubber and metal substrate is governed by surface pretreatment. Various methodologies such as mechanical and chemical are adopted for the same. This paper aims to present a comparative study as to which surface pretreatment has an edge over other techniques in terms of separation force required to break the bonding between the two parts. The study also presents a cost comparison between the techniques so that the best possible technique can be put to use in the commercial vehicle industry.
Technical Paper

A Comparison Between Micromachined Piezoresistive and Capacitive Pressure Sensors

1997-11-17
973241
Hundreds of millions of micromachined, piezoresistive Manifold Absolute Pressure (MAP) sensors have been produced to reduce pollution and improve fuel efficiency in engine control systems. Other vehicle applications for micromachined pressure sensors include monitoring turbo pressure, barometric pressure, fuel tank leakage, fuel rail pressure and tire pressure. Exhaust gas recirculation and even door compression for side impact detection are employing micromachined silicon pressure sensors. Piezoresistive pressure sensors have dominated the automotive market to date. Practical micromachined capacitive pressure sensors have recently been developed and could replace the piezoresistive sensor in many applications. This paper will examine the advantages of both pressure sensing technologies, and discuss applications that an inexpensive capacitive pressure sensor will open up.
Technical Paper

A Comprehensive Study on Euro 6 Turbocharger Selections and Its Deterioration with Closed Crank-Case Ventilation in Heavy Commercial Vehicles

2019-09-09
2019-24-0061
Euro 6 emission norms are getting implemented in India from April 2020 and it is being viewed as one of the greatest challenges ever faced by the Indian automotive industry. In order to achieve such stringent emission norms a good strategy will be to optimize the engine out emission through in cylinder emission control techniques and a right sized after treatment system has to be used for this optimized engine. There exist several factors and trade-off between these should be established for in cylinder optimization of emissions. Since the turbocharger plays an apex role in controlling both the performance and engine out emissions of a CI engine, turbocharger selection is a crucial step in the development of new generation of Euro 6 engines in India. Such engines are equipped with additional actuators such as Intake Throttle Valve and Exhaust Throttle Valve and combination of these flap operations with turbocharger output plays a prominent role in controlling performance and emission.
Technical Paper

A Computational Investigation into the Effects of Included Spray Angle on Heavy-Duty Diesel Engine Operating Parameters

2012-09-10
2012-01-1714
Effects of included spray angle with different injection strategies on combustion characteristics, performance and amount of pollutant emission have been computationally investigated in a common rail heavy-duty DI diesel engine. The CFD model was firstly validated with experimental data achieved from a Caterpillar 3401 diesel engine for a conventional part load condition at 1600 rev/min. Three different included spray angles (α = 145°, 105°, 90°) were studied in comparison with the traditional spray injection angle (α = 125°). The results show that spray targeting is very effective for controlling the in-cylinder mixture distributions especially when it accompanied with various injection strategies. It was found that 105° spray cone angle along with an optimized split pre- and post-Top Dead Center (TDC) injection strategy could significantly reduce NOx and soot emissions without much penalty of the fuel consumption, as compared to the wide spray angle.
Technical Paper

A Computer Cooling System Study of a Diesel Powered Truck for Control of Transient Coolant, Oil and Cab Temperatures

1982-02-01
821049
A Vehicle-Engine-Cooling (VEC) system computer simulation model was used to study the transient performance of control devices and their temperature settings on oil, coolant and cab temperatures. The truck used in the study was an International Harvester COF-9670 cab over chassis heavy-duty vehicle equipped with a standard cab heater, a Cummins NTC-350 diesel engine with a McCord radiator and standard cooling system components and aftercooler. Input data from several portions of a Columbus to Bloomington, Indiana route were used from the Vehicle Mission Simulation (VMS) program to determine engine and vehicle operating conditions for the VEC system computer simulation model. The control devices investigated were the standard thermostat, the Kysor fan-clutch and shutter system. The effect of shutterstat location on shutter performance along with thermostat, shutter and fan activation temperature settings were investigated for ambient temperatures of 32, 85 and 100°F.
X