Refine Your Search

Topic

Author

Affiliation

Search Results

Event

2024-05-10
Event

2024-05-10
Event

2024-05-10
Event

2024-05-10
Standard

15 Pole Connector Between Towing Vehicles and Trailers with 12 Volt Nominal Supply

2018-04-15
HISTORICAL
J2691_201804
This SAE standard establishes the minimum construction and performance requirements for a 15 Pole Connector Between Towing Vehicles and Trailers, for trucks, trailers, and dollies in conjunction with SAE J2742. The connector accommodates both power and ISO 11992-1 signal circuits along with dual ground wires to accommodate grounding requirements within the constraints of the SAE J2691 terminal capacity.
Standard

15 Pole Connector Between Towing Vehicles and Trailers with 12 Volt Nominal Supply

2020-02-25
CURRENT
J2691_202002
This SAE Standard establishes the minimum construction and performance requirements for a 15 pole connector between towing vehicles and trailers, for trucks, trailers, and dollies, for 12 VDC nominal applications in conjunction with SAE J2742. The connector accommodates both power and ISO 11992-1 signal circuits along with dual ground wires to accommodate grounding requirements within the constraints of the SAE J2691 terminal capacity.
Technical Paper

1983 Ford Ranger Truck HSLA Steel Wheel

1982-02-01
820019
The demand for improved fuel economy in both cars and trucks has emphasized the need for lighter weight components. The application of high strength steel to wheels, both rim and disc, represents a significant opportunity for the automotive industry. This paper discusses the Ranger HSLA wheel program that achieved a 9.7 lbs. per vehicle weight savings relative to a plain carbon steel wheel of the same design. It describes the Ranger wheel specifications, the material selection, the metallurgical considerations of applying HSLA to wheels, and HSLA arc and flash butt welding. The Ranger wheel design and the development of the manufacturing process is discussed, including design modifications to accommodate the lighter gage. The results demonstrate that wheels can be successfully manufactured from low sulfur 60XK HSLA steel in a conventional high volume process (stamped disc and rolled rim) to meet all wheel performance requirements and achieve a significant weight reduction.
Technical Paper

2003 Chevrolet Kodiak and GMC TopKick Airbag Sensing System Development

2002-11-18
2002-01-3101
Airbag systems have been part of passenger car and truck programs since the mid-1980's. However, systems designed for medium and heavy duty truck applications are relatively new. The release of airbag systems for medium duty truck has provided some unique challenges, especially for the airbag sensing systems. Because of the many commercial applications within the medium duty market, the diversity of the sensing environments must be considered when designing and calibrating the airbag sensing system. The 2003 Chevrolet Kodiak and GMC TopKick airbag sensing development included significant work, not only on the development of airbag deployment events but also non-deployment events – events which do not require the airbag to deploy. This paper describes the process used to develop the airbag sensing system deployment events and non-deployment event used in the airbag sensing system calibration.
Book

2009 Ultimate GD&T Pocket Guide 2nd Ed

2017-03-27
The Ultimate GD&T Pocket Guide explains the most common rules, symbols, and concepts used in geometric dimensioning and tolerancing. ...This one-of-a-kind reference guide includes over 100 detailed drawings to illustrate concepts, more than 40 charts for quick reference, explanations of each GD&T symbol and modifier and much more...Written by standards expert Alex Krulikowski, this valuable on-the-job reference clarifies how to interpret standard-compliant technical drawings that use ASME Y14.5-2009.
Event

2022 COMVEC™

2024-05-10
COMVEC™ conference is the only North American event that addresses vehicles and equipment spanning on-highway, off-highway, agricultural, construction, industrial, military, and mining sectors.
Journal Article

5.9 GHz DSRC Standards Overview and Status

2008-10-07
2008-01-2651
Over the past several years the Institute of Electrical and Electronic Engineers (IEEE) Standards Association has developed standards for the 5.9 GHz Dedicated Short Range Communications protocols, also known as Wireless Access in Vehicular Environments. These standards consist of IEEE 1609 as well as an amendment to the IEEE 802.11 standard or 802.11p. The 1609 standards were published for Trial Use and these as well as the 802.11p draft have been implemented in a variety of test beds to provide lessons learned and feedback into the standards working groups. Based on ongoing testing, the protocols display a strong capability to address the requirements of crash avoidance and transportation mobility applications. The corresponding test results provide information necessary to update the standards after the first trial phase as industry moves toward commercial implementations.
Journal Article

6-Axis Measuring Wheels for Trucks or Heavy Vehicles

2014-04-01
2014-01-0816
The measurement of the contact forces between road and tires is of fundamental importance while designing road vehicles. In this paper, the design and the employment of measuring wheels for trucks and heavy vehicles is presented. The measuring wheels have been optimized in order to obtain high stiffness and the approximately the same mass of the wheels normally employed. The proposed multicomponent measuring wheels are high- accuracy instruments for measuring the dynamic loads during handling and durability testing. The measuring wheels can replace the wheels of the truck under normal operation. Such family of wheels plays a major role in modern road vehicles development. The measuring wheel concept design is based on a patented three-spoke structure connected to the wheel rim. The spokes are instrumented by means of strain gauges and the measuring wheel is able to measure the three forces and the three moments acting at the interface between the tire and the road.
Technical Paper

8×8 Platform for Studing Terrain Mobility and Traction Performance of Unmanned Articulated Ground Vehicles with Steered Wheels

2013-09-24
2013-01-2356
Two characteristics of terrain mobility are essential in designing an unmanned ground vehicle (UGV): (i) the ability of a vehicle to move through terrain of a given trafficability and (ii) the obstacle performance, i.e., the ability to avoid, interact with and overcome obstacles encountered on a preset route of a vehicle. More attention has been given to the vehicle geometry including selection of the angles of approach and departure, radii of longitudinal and lateral terrain mobility, and the steering system configuration. An essential effect is exhibited by the tire properties in their interaction with the support surface; this, in turn, affects traction properties of the wheel and, thus, vehicle terrain mobility. However, the influence of power distribution between the driving wheels together with vehicle steering system on the two above-listed characteristics of terrain mobility has not been considered in depth.
Technical Paper

9000T Series John Deere Track Tractors

2000-09-11
2000-01-2634
The 9000T track-type agricultural tractors mark John Deere's entry into the high-horsepower, track tractor market. The 360-HP 9300T and the 425-HP 9400T tractors were designed with input from customers to meet customers' needs. Through customer input, on-farm research, and common sense, these tractors have been designed to work light in the spring, heavy in the fall, handle steep hillsides, turn under load and pull like a locomotive. Incorporating many of the already-market-dominating features of the 9000 wheel tractors plus innovative track vehicle features such as the wide stance, long wheel base, controllability, power, and versatility, these machines are truly amazing.
Technical Paper

A 2D Model for Tractor Tire-Soil Interaction: Evaluation of the Maximum Traction Force and Comparison with Experimental Results

2011-04-12
2011-01-0191
The paper investigates the interaction between soil and tractor tires through a 2D numerical model. The tire is schematized as a rigid ring presenting a series of rigid tread bars on the external circumference. The outer profile of the tire is divided into a series of elements, each one able to exchange a normal and a tangential contact force with the ground. A 2D soil model was developed to compute the forces at the ground-tire interface: the normal force is determined on the basis of the compression of the soil generated by the sinking of the tire. The soil is modeled through a layer of springs characterized by two different stiffness for the loading (lower stiffness) and unloading (higher stiffness) condition. This scheme allows to introduce a memory effect on the soil which results stiffer and keeps a residual sinking after the passage of the tire. The normal contact force determines the maximum value of tangential force provided before the soil fails.
Technical Paper

A Band Variable-Inertia Flywheel Integrated-Urban Transit Bus Performance

1990-10-01
902280
By means of computer simulation, the potential of a Band Variable-Inertia Flywheel (BVIF) as an energy storage device for a diesel engine city bus is evaluated. Replacing both a fixed-inertia flywheel (FIF) and a continuously variable transmission (CVT), the BVIF is capable of accelerating a vehicle from rest to a nearly-constant speed, while recovering part of the kinetic energy normally dissipated through braking of the vehicle. The results are compared with that of conventionally-powered bus. A fuel saving of up to 30 percent is shown with the BVIF-integrated system. The regenerative braking system reduces brake wear by a factor of five in comparison with the conventional vehicle.
X