Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

100% LPG Long Haul Truck Conversion - Economy and Environmental Benefits

2012-09-24
2012-01-1983
Advanced Vehicle Technologies (AVT), a Ballarat Australia based company, has developed the World's first diesel to 100% LPG conversion for heavy haul trucks. There is no diesel required or utilized on the trucks. The engine is converted with minimal changes into a spark ignition engine with equivalent power and torque of the diesel. The patented technology is now deployed in 2 Mercedes Actros trucks. The power output in engine dynamometer testing exceeds that of the diesel (in excess of 370 kW power and 2700 Nm torque). In on-road application the power curve is matched to the diesel specifications to avoid potential downstream power-train stress. Testing at the Department of Transport Energy & Infrastructure, Regency Park, SA have shown the Euro 3 truck converted to LPG is between Euro 4 and Euro 5 NOx levels, CO2 levels 10% better than diesel on DT80 test and about even with diesel on CUEDC tests.
Technical Paper

1983 Ford Ranger Truck HSLA Steel Wheel

1982-02-01
820019
The demand for improved fuel economy in both cars and trucks has emphasized the need for lighter weight components. The application of high strength steel to wheels, both rim and disc, represents a significant opportunity for the automotive industry. This paper discusses the Ranger HSLA wheel program that achieved a 9.7 lbs. per vehicle weight savings relative to a plain carbon steel wheel of the same design. It describes the Ranger wheel specifications, the material selection, the metallurgical considerations of applying HSLA to wheels, and HSLA arc and flash butt welding. The Ranger wheel design and the development of the manufacturing process is discussed, including design modifications to accommodate the lighter gage. The results demonstrate that wheels can be successfully manufactured from low sulfur 60XK HSLA steel in a conventional high volume process (stamped disc and rolled rim) to meet all wheel performance requirements and achieve a significant weight reduction.
Technical Paper

1D Modeling of the Outwardly Opening Direct Injection for Internal Combustion Engines Operating with Gaseous and Liquid Fuels

2021-09-05
2021-24-0006
The in-cylinder direct injection of fuels can be a further step towards cleaner and more efficient internal combustion engines. However, the injector design and its characterization, both experimental and from numerical simulation require accurate diagnostics and efficient models. This work aims to simulate the complex behavior of the gaseous and liquid jets through an outwardly opening injector characterized by optical diagnostics using a one-dimensional model without using three dimensional models. The behavior of the jet from an outwardly opening injector changes according to the type of fuel. In the case of the gas, the experimental investigations put in evidence three main jet regions: 1) near-field region where the jet shows a complex gas-dynamic structure; 2) transition region characterized by intense mixing; 3) far-field region characterized by a fully developed subsonic turbulent jet.
Technical Paper

3-dimensional Simulation of Knock in a Heavy-Duty LPG Engine

2002-10-21
2002-01-2700
Three-dimensional transient simulation was performed and an autoignition model was implemented to predict knock occurrence and autoignition site in a heavy-duty liquefied petroleum gas (LPG) engine. A flame area evolution (FAE) premixed combustion model was applied to simulate flame propagation. Engine experiments using a single-cylinder research engine were performed to calibrate the reduced kinetic model and to verify the result of this modeling. A pressure transducer and a head-gasket type ion-probe circuit board were installed to detect knock occurrence, flame arrival angle, and autoignition site. The simulation result shows good agreement with engine experiments. It also provides much information about in-cylinder phenomena and some ways to reduce knocking tendency. This knock simulation can be used as a development tool of engine design.
Technical Paper

4994 Tractor Hydraulic System

1984-09-01
841100
J I Case Company has produced four-wheel-drive agricultural tractors since 1964. In 1984 however, the flagship of the Case fleet changed hands. Rising labor costs and larger farming operations spearheaded the need for a more efficient larger tractor. January 1984 marked the introduction of the largest four-wheel-drive tractor in the history of Case, the 4994, a 400-gross engine horsepower tractor, Figure 1. Sheer horsepower alone however, would not meet the requirements of today's farming operations. Case Engineering realized that tomorrows tractors must have sufficient power to handle the wide variety of attachments available. They also realized that along with the unmatched power must come precise control of the attachment. These advancements in farming have required improvements to the tractor hydraulic system. This paper describes the hydraulic system of the 4994, Case's new flagship.
Journal Article

5.9 GHz DSRC Standards Overview and Status

2008-10-07
2008-01-2651
Over the past several years the Institute of Electrical and Electronic Engineers (IEEE) Standards Association has developed standards for the 5.9 GHz Dedicated Short Range Communications protocols, also known as Wireless Access in Vehicular Environments. These standards consist of IEEE 1609 as well as an amendment to the IEEE 802.11 standard or 802.11p. The 1609 standards were published for Trial Use and these as well as the 802.11p draft have been implemented in a variety of test beds to provide lessons learned and feedback into the standards working groups. Based on ongoing testing, the protocols display a strong capability to address the requirements of crash avoidance and transportation mobility applications. The corresponding test results provide information necessary to update the standards after the first trial phase as industry moves toward commercial implementations.
Technical Paper

50 Years of Agricultural Tractor Development

1966-02-01
660584
The story of Power Farming is the great saga of our times. It is a story of free enterprise, perseverance and endurance of the individual, of vision, idealism and cooperation among men, of the lightening of human toil and the release of millions of workers from farms to feed the ever hungry industrial revolution. By no means least, it is the story of producing food necessary to win two global wars, keep our allies alive and millions of the defeated enemy from starvation. FOREWARD By 1915, the Steam Traction Engine had attained its highest development. It was the forerunner, rather than the predecessor, of the farm tractor. The former was the instrument of expansion; the latter, the instrument of progress. The invention of the tractor, following by only sixteen years Otto's practical embodiment application of the Beau de Rochas power cycle to a heat engine, marked the advent of a new order - - the age of Power Farming.
Book

8th AVL International Commercial Powertrain Conference (2015)

2015-05-21
Organized in cooperation with SAE International, AVL’s International Commercial Powertrain Conference- ICPC, happens every two years. This event offers a unique opportunity for engineers to address the synergy effects and distinctive characteristics of commercial vehicles, agricultural tractors and non-road vehicles, and industrial machinery. In 2015, the 8th ICPC focused on alternative powertrain technologies and innovations improving operating efficiency. These proceedings include 17 papers focusing on the following topics: • Emissions reduction for heavy-duty vehicles • Alternative drivetrains • Autonomous driving • Connected driving • Efficiency • Alternative fuels • Product diversity • Challenges of cost vs. complexity
Technical Paper

A Bench Test for the Evaluation of Silver-Steel Lubrication Properties of Railroad Diesel Oils

1969-02-01
690775
A pin and disc machine has been modified for the evaluation of silver-steel lubrication characteristics of railroad diesel oils. Use of silver pins on polished steel discs at selected loads and rubbing speeds allows good correlation with known engine behavior. In comparison with wear and friction data obtained by the four ball method, this pin and disc test gives better correlation with engine tests than the Modified Four Ball Test.
Technical Paper

A Cartridge Type Pivotal Pin and Bushing Joint

1982-02-01
820636
A cartridge type pivotal pin and bushing joint has been patented and is being tested and refined both in the laboratory and on construction machinery. It features “dry lubricated” (Teflon) bearings which are assembled and sealed prior to installation. It is suitable for heavy unit loads and use under severe wear conditions, such as in crawler track chains and loader bucket pivotal pin joints. A brief history of U. S. manufactured track pin joints is included to show the progress in extending the service life of these devices.
Technical Paper

A Comparative Analysis of WHR System in HD Engines Using Conventional Diesel Combustion and Partially-Premixed Combustion

2012-09-24
2012-01-1930
In the truck industry there is a continuous demand to increase the efficiency and to decrease the emissions. To acknowledge both these issues a waste heat recovery system (WHR) is combined with a partially premixed combustion (PPC) engine to deliver an efficient engine system. Over the past decades numerous attempts to increase the thermal efficiency of the diesel engine has been made. One such attempt is the PPC concept that has demonstrated potential for substantially increased thermal efficiency combined with much reduced emission levels. So far most work on increasing engine efficiency has been focused on improving the thermal efficiency of the engine while WHR, which has an excellent potential for another 1-5 % fuel consumption reduction, has not been researched that much yet. In this paper a WHR system using a Rankine cycle has been developed in a modeling environment using IPSEpro.
Technical Paper

A Comparative Study between Abrasion Techniques to Improve the Adhesion of Rubber and Metal Bond for Commercial Vehicle Applications

2021-09-22
2021-26-0253
Engine mounts are an integral part of the vehicle that helps in reducing the vibrations generated from the engine. Engine mounts require a simple yet complicated amalgamation of two very different materials, steel and rubber. Proper adhesion between the two is required to prevent any part failure. Therefore, it becomes important that a comprehensive study is done to understand the mating phenomenon of both. A good linking between rubber and metal substrate is governed by surface pretreatment. Various methodologies such as mechanical and chemical are adopted for the same. This paper aims to present a comparative study as to which surface pretreatment has an edge over other techniques in terms of separation force required to break the bonding between the two parts. The study also presents a cost comparison between the techniques so that the best possible technique can be put to use in the commercial vehicle industry.
Technical Paper

A Comparison of Controller Designs for an Active, Electromagnetic, Offroad Vehicle Suspension System Traveling at High Speed

1998-02-23
980924
This paper discusses controller development for an active, off-road vehicle suspension system. A brief review of electronic filters and their characteristics is used to provide insight on the difficulties of designing a control algorithm for negotiating hilly and rough terrain at higher speeds. Two controller designs are presented. One was designed by pole placement and causes the suspension response to approximate a Type 1 Chebychev filter. The other was designed using constrained optimization. A comparison and discussion of simulation results leads to the conclusion that the suspension should be adaptively or predictively controlled for arbitrary terrain and velocity conditions.
Technical Paper

A Comparison of the Fatigue Lives of Polyvinylchloride & Steel Welds

1988-04-01
880818
This paper describes the results of a series of fatigue studies relating the lives of several weld geometries. Rotating beam and axially loaded specimens were used. A comparison between steel and plastic (polyvinylchloride scale models is made. Using plastic scale models of welded structures for fatigue life determination is the ultimate goal of this work.
Technical Paper

A Composite Approach to Reducing Abrasive Wear

1983-09-12
831375
“Today, wearing parts are regularly subjected to abnormal loading conditions. They must be able to accept these conditions without failure. In continuous operations, unscheduled downtime greatly increases maintenance costs, not to mention the cost of lost production. White iron castings offer premium abrasion resistance for many of these applications, but are often not used due to the possibility of brittle failure and the difficulty of mechanical attachment. This paper discusses the properties and applications of a composite of martensitic white iron and mild steel. This laminate will accept medium to high impact without loss of service failure, and can be installed by mechanical means or with welded attachment.”
Technical Paper

A Compressed Natural Gas Mass Flow Driven Heavy Duty Electronic Engine Management System

1993-08-01
931822
This paper describes the conversion of a stationary spark ignition engine to a heavy duty (HD) natural gas engine suitable for transportation applications, in response to the new urban truck and bus legislation of 1994 and 1998. The approach to the fuel and ignition control system is to use a microprocessor controlled engine management system based on inputs from combustion air and natural gas mass flow sensors. As the emission control system is also based on stoichiometric three way catalyst technology, it is felt that the control approach is very robust. The engine and control system were first mounted on a HD dynamometer for the development work where engine control parameters were calibrated. In addition steady state emission data were collected and estimates of the HD transient emission levels were obtained.
Technical Paper

A Consolidated Investigation on LPG as an Alternative Fuel for Public Utility Jeepneys

2018-04-03
2018-01-0917
This paper presents the results of a two-phase Philippine study to determine the actual mileage (km/liter) of in-use diesel and LPG (liquefied petroleum gas or Auto-LPG) public utility jeepneys plying two separate Metro Manila urban routes using both on-road and chassis dynamometer tests. Measured average load factor in on-road tests was 60-70%. Dynamometer tests at 100% load factor utilized drive cycles derived from on-road speed data. A “diesel equivalent mileage” of actual LPG mileage, deemed indicative of LPG “fuel energy conversion efficiency” relative to diesel, was calculated (based solely on fuel heating values and densities) for comparing actual mileage from both fuels. The LPG actual mileage in both on-road and laboratory tests was lower than diesel mileage. In on-road tests, the LPG actual mileage was lower than diesel actual mileage by about the same percentage LPG heating value was lower than diesel’s per liter of fuel.
Technical Paper

A Cost Effective, New Coating for Multi Layer Steel Exhaust Gaskets

2003-11-10
2003-01-3403
Current trends in environmental and emissions regulations are driving changes in new engine systems, and increasing the need for more effectively sealed joints in exhaust systems. At the high temperatures in these exhaust systems it is difficult for traditional gaskets to provide an effective seal, as they degrade at high operating temperatures. This paper introduces a coating that has both excellent temperature stability and good compliance, thus forming an excellent sealing enhancement for metallic layers in exhaust system gaskets. Temperature stability data is presented along with sealing data, which illustrate the superior performance of this material compared to current systems.
Technical Paper

A Decision Network Framework for Vehicle Systems Engineering

2005-11-01
2005-01-3623
A Decision Network is an explicit model of the Thinking Breakdown Structure of any complex scientific, engineering, or societal challenge. Each node in the Decision Network represents a fundamental question that must be answered, i.e. a choice that demands a solution. A Decision Network provides an integrated Decision Management framework for any Systems Engineering effort that links business, technology and design choices. Effective Decision Management is the key to Systems Engineering success. This paper will provide an overview of a decision-centric approach to Systems Engineering built around Decision Networks. Lessons learned through the use of Decision Networks in other industries will be extrapolated for use in vehicle Systems Engineering.
Technical Paper

A Demonstration of Methanol-Powered Buses in Windsor Ontario

1994-11-01
942314
Emissions from heavy-duty diesel vehicles have come under increased scrutiny with passage of the U.S. Clean Air Act Amendments of 1990. Methanol (M100) is seen as an important option for operators of transit fleets given the fuel's liquid nature and relative availability. This paper presents the results of a 36-month demonstration of a fleet of six methanol-powered transit buses equipped with DDC 6V-92TA engines. The engines were delivered in 1991 and were the first batch of Detroit Diesel engines certified to meet 1991 clean air standards. A similarly equipped control fleet of six diesel buses was tracked simultaneously. This paper includes an evaluation of bus operating data and emissions. Data such as fuel and oil consumption were collected along with a complete list of maintenance actions on both fleets. Chassis dynamometer emissions testing was carried out by Environment Canada at their River Road (Ottawa) test facility.
X