Refine Your Search

Topic

Search Results

Technical Paper

A Military Space Plane Candidate

1997-10-01
975630
This paper presents a Military Space Plane design concept. While the current military space plane activity is focused on rocket-powered concepts, the concept presented here is powered by a rocket-based combined cycle engine that uses both rocket and air-breathing engine cycles. The design concept is the reference SSTO design concept used in the NASA HRST ANSER study. The reference concept is a derivative of the NASA air-breathing Access to Space study SSTO design concept. The Access to Space air-breathing vehicle's combined cycle engine was replaced by the Aerojet rocket-based combined cycle engine. The orbital performance capability of the reference design concept is presented for 100 n mi., polar, and 225 n mi., 51 deg. orbits. The sensitivity of GTOW to payload and margin is also presented.
Training / Education

AS9145 Requirements for Advanced Product Quality Planning and Production Part Approval

2024-07-08
This course is verified by Probitas as meeting the AS9104/3A requirements for Continuing Professional Development. Production and continual improvement of safe and reliable products is key in the aviation, space, and defense industries. Customer and regulatory requirements must not only be met, but they are typically expected to exceeded requirements. Due to globalization, the supply chain of this industry has been expanded to countries which were not part of it in the past and has complicated the achievement of requirements compliance and customer satisfaction.
Magazine

Aerospace & Defense Technology: August 2021

2021-08-01
Thermal Management Techniques in Avionics Cooling Curing the Porosity Problem in Additive Manufacturing Space-Qualified Crystal Oscillators Reimagining Automated Test During a Pandemic EW: New Challenges, Technologies, and Requirements Software Enables New-Age, Flexible Test Solution for Analog and Digital Radios Formal Process Modeling to Improve Human-Decision-Making During Test and Evaluation Range Control Using the Innoslate software tool to formally model the process of conducting test range events can expose previously overlooked ambiguities and identify high-value decision points? Test and Evaluation of Autonomy for Air Platforms Tools, approaches, and insights to confidently approach the safe, secure, effective, and efficient testing of autonomy on air platforms.
Technical Paper

Analysis of Geo-Location Data to Understand Power and Energy Requirements for Main Battle Tanks

2024-04-09
2024-01-2658
Tanks play a pivotal role in swiftly deploying firepower across dynamic battlefields. The core of tank mobility lies within their powertrains, driven by diesel engines or gas turbines. To better understand the benefits of each power system, this study uses geo-location data from the National Training Center to understand the power and energy requirements from a main battle tank over an 18-day rotation. This paper details the extraction, cleaning, and analysis of the geo-location data to produce a series of representative drive cycles for an NTC rotation. These drive-cycles serve as a basis for evaluating powertrain demands, chiefly focusing on fuel efficiency. Notably, findings reveal that substantial idling periods in tank operations contribute to diesel engines exhibiting notably lower fuel consumption compared to gas turbines. Nonetheless, gas turbines present several merits over diesel engines, notably an enhanced power-to-weight ratio and superior power delivery.
Technical Paper

Application of Desirability Approach to Determine Optimal Turning Parameters

2024-02-20
2024-01-5022
Aluminum alloys are employed in agricultural equipment, aerospace sectors, medical instruments, machinery, automobiles, etc. due to their physical and mechanical characteristics. The geometrical shape and size of the parts are modified in turning operation by using a single-point cutting tool. A356 aluminum alloy is widely used in various engineering sectors, hence there is a necessity to produce A-356 components with quality. The inappropriate cutting parameters used in turning operation entail high production costs and reduce tool life. Box–Behnken design (BBD) based on response surface methodology (RSM) was used to design the experiments such that the experiment trials were conducted by varying cutting parameters like N-spindle speed (rpm), f-feed rate (mm/rev), and d-depth of cut (mm). The multi-objective responses, such as surface roughness (SR) and metal removal rate (MRR) were analyzed with the desirability method.
Technical Paper

Comparison and Evaluation of Performance, Combustion and Particle Emissions of Diesel and Gasoline in a Military Heavy Duty 720 kW CIDI Engine Applying EGR

2020-09-15
2020-01-2057
Investigating the impact of Gasoline fuel on diesel engine performance and emission is very important for military heavy- duty combat vehicles. Gasoline has great potential as alternative fuel due to rapid depletion of petroleum reserves and stringent emission legislations, under multi fuel strategy program for military heavy- duty combat vehicle. There is a known torque, horsepower and fuel economy penalty associated with the operation of a diesel engine with Gasoline fuel. On the other hand, experimental studies have suggested that Gasoline fuel has the potential for lowering exhaust emissions, especially NOx, CO, CO2, HC and particulate matter as compared to diesel fuel. Recent emission legislations also restrict the total number of nano particles emitted in addition to particulate matter, which has adverse health impact.
Journal Article

Conceptualizing an Urban Operations Vehicle within a Comprehensive Research and Development Program

2023-09-07
Abstract In the last decades we have witnessed an increasing number of military operations in urban environments. Complex urban operations require high standards of training, equipment, and personnel. Emergency forces on the ground will need specialized vehicles to support them in all parts and levels of this extremely demanding environment including the subterranean and interior of infrastructure. The development of vehicles for this environment has lagged but offers a high payoff. This article describes the method for developing a concept for an urban operations vehicle by characterization of the urban environment, deduction of key issues, evaluation of related prototyping, science fiction story-typing of the requirements for such a vehicle, and comparison with field-proven and scalable solutions. Embedding these thoughts into a comprehensive research and development program provides lines of development, setting the stage for further research.
Journal Article

Design of a 1.2 kW Interleaved Synchronous Buck Converter for Retrofit Applications in Aviation Systems

2020-10-19
Abstract Presently, 270 V direct current (DC) systems replace older 28 V DC voltage systems in both the civil and military aviation industry due to the requirement for more electrical power needs on board. Therefore, the existing avionics require retrofitting. The conversion from 270 V to 28 V appears to be quite promising for both old and new systems. This study aims to design an interleaved synchronous modular buck converter topology as a candidate for these requirements. Calculations for the converter design are conducted considering aviation standards. Switching with pulse-width modulation (PWM) is used to control the power converter. A double-loop feedback control system based on voltage and current feedback is designed. Therefore, the buck converter circuit with 1145 W power output is proposed, which supplies a 28 V and 41 A DC output from a 270 V DC input. The concept is verified using simulations and hardware-in-the-loop (HIL) experimental results.
Journal Article

Designing Manual Workplace Systems in Engineer-to-Order Enterprises to Improve Productivity: A Kano Analysis

2024-01-16
Abstract Being an engineer-to-order (ETO) operating industry, the control cabinet industry faces difficulties in process and workplace optimizations due to changing requirements and lot size one combined with volatile orders. To optimize workplaces for employees, current literature is focusing on ergonomic designs, providing frameworks to analyze workplaces, leaving out the optimal design for productivity. This work thus utilizes a Kano analysis, collecting empirical data to identify essential design requirements for assembly workplaces, incorporating input from switchgear manufacturing employees. The results emphasize the need for a balance between ergonomics and efficiency in workplace design. Surprisingly, few participants agree on the correlation between improved processes and workspaces having a positive impact on their well-being and product quality.
Standard

Diminishing Manufacturing Sources and Material Shortages (DMSMS) Management Practices

2015-07-01
CURRENT
GEB1
This document includes a standard set of management practices that can be used, or espoused, by the OEMs for use during the design and development of electronic systems to mitigate the effects of future Diminishing Manufacturing Sources and Material Shortages (DMSMS). While this document focuses primarily on microelectronic devices, the methods described here may also apply to other commodities.
Training / Education

Engineering Project Management

2024-10-22
This course is verified by Probitas as meeting the AS9104/3A requirements for Continuing Professional Development. Project Management and Advanced Product Quality Planning (APQP) are two critical techniques used in product development in the mobility industry today. This course will bring these techniques together in an easy to understand format that goes beyond the typical concept of constructing timelines and project planning, by exploring not only the Automotive APQP process, but also key aspects of PM processes.
Technical Paper

Enhanced HUD Symbology Associated with Recovery from Unusual Attitudes

1990-09-01
901919
The present study examined the degree of spatial awareness obtained using what has been called an Augie Arrow, enabled so that it could be displayed as either a “nearest horizon pointer” (NH) or an “up arrow” (UP) indicator. Another issue investigated concerned the usefulness of analog dials vice digital readouts of airspeed and altitude as an aid to recovery. During simulated flight, twelve subjects were required to recover from six unusual attitudes employing one of four HUD formats: (1) Standard HUD, (2) Augie Arrow, (3) Analog Dials, and (4) Augie Arrow with Analog Dials. Results revealed that the Augie Arrow produced the most rapid recovery time. The Augie Arrow configuration was optimal at the most severe unusual attitudes, especially for the NH mechanization. The Dials only HUD was not particularly helpful in recovery, and the Arrow with Dials HUD was rated as a significant clutter problem.
Training / Education

FEA Beyond Basics: Thermal Analysis Web Course RePlay

Anytime
Finite Element Analysis (FEA) is a powerful and well recognized tool used in the analysis of heat transfer problems. However, FEA can only analyze solid bodies and, by necessity thermal analysis with FEA is limited to conductive heat transfer. The other two types of heat transfer: convection and radiation must by approximated by boundary conditions. Modeling all three mechanisms of heat transfer without arbitrary assumption requires a combined use of FEA and Computational Fluid Dynamics (CFD).
Journal Article

Future of Autonomous High-Mobility Military Systems

2020-10-19
Abstract Autonomy has the potential to make the most radical impact by significantly reducing the number of soldiers in harm’s way and changing the military paradigm. Benefits of autonomy to improve the Army’s mission capabilities and the rapid evolution of military systems exerts pressure to develop these systems quickly. Since the associated technological development is highly fast paced and stochastic, approaches that develop systems for stochastic future scenarios are required. In this article we present a vision for the autonomous high-mobility military systems for that future. We discuss the ramifications of autonomy in five areas: (1) fleet organization, (2) physical attributes of high-mobility military systems, (3) individual behaviors of autonomous assets, (4) interactions between humans and autonomous systems, and (5) operation and teaming strategies. We present the future vision, implications, requirements, and technological challenges for each of the five areas.
Technical Paper

Guiding Framework for Feasibility Evaluation of Localised Production and Drop in Blending of Aviation Turbine Fuel with Bio Derivatives for Non-civilian Air Bases

2011-10-18
2011-01-2792
The potential for small scale local production of Bio fuel derivatives and their partial blending with aviation turbine fuel in non-civilian bases has been investigated. A feasibility study on technical readiness levels for process viability is presented in the paper. Demand side analysis for various blend mixes and corresponding requirement for production facilities and land area requirements are performed. Sustainable production and blending operations are the basis for selection of key performance indicators for the air base. Guiding framework and readiness evaluation processes are delineated for the base. Qualitative inference is combined with quantitative scoring system within the framework.
Book

Hall-Scott: The Untold Story of a Great American Engine Maker

2007-01-25
Author Francis Bradford, a former Hall-Scott engineer, provides valuable resources and insight not available to any other Hall-Scott researcher. Well-illustrated with numerous photos, drawings, and memos, this fascinating book will be of interest to history buffs in the areas of aviation, rail, marine, trucks, buses, fire equipment, and industrial engines, and to World War and military historians.
Research Report

Impact of Quantum Computing in Aerospace

2022-06-14
EPR2022014
As the complexity of systems expands with increasing emphasis for digital transformation, the aerospace industry is generating big data to meet customer requirements. The ability to that data to solve challenging problems is limited by many factors, including the capabilities of current classical computing systems. Impact of Quantum Computing in Aerospace discusses how quantum computing systems offer (possibly quadratic to exponentially) greater computational power over classical computers. The power of quantum computing is tremendous and has many potential impacts on the aerospace industry; however, there are also many unsettled topics surrounding the future of the technology. Click here to access the full SAE EDGETM Research Report portfolio.
Technical Paper

Methodology and Results of Testing an Impact of F-34 Fuel on the Engine Reliability

2020-09-15
2020-01-2133
An application of the new kind of the fuel for the diesel engine requires to conduct the qualification tests of the engines powered by this his fuel which allow assessing an impact of fuel on the engine reliability. Such a qualification test of the piston and turbine engines of the aircraft stationed on the ground and land vehicles is described in the NATO standardisation agreement (STANAG) 4195 as the AEP-5 test. The methodology and selected results of the qualification tests of the SW-680 turbocharged multi-purpose diesel engine fuelled with F-34 fuel have been presented in this paper. A dynamometric stand with the SW-680 engine has been described. Based on the preliminary results of the investigation it has been found that a change in a type of the fuel from IZ-40 diesel fuel into F-34 kerosene-type one has reduced a maximum engine torque by about 4%. This has been primarily due to a lower fuel density of F-34 by about 3%.
Standard

NATIONAL AEROSPACE AND DEFENSE CONTRACTORS ACCREDITATION PROGRAM REQUIREMENTS FOR NONCONVENTIONAL MACHINING

2002-02-01
HISTORICAL
AS7116
This Aerospace Standard (AS) establishes the requirements for suppliers of Nonconventional Machining Services to be accredited by the National Aerospace and Defense Contractors Accreditation Program (NADCAP). NADCAP accreditation is granted in accordance with SAE AS7003 after demonstration of compliance with the requirements herein. The requirements may be supplemented by additional requirements specified by the NADCAP Nonconventional Machining and Surface Enhancement (NMSE) Task Group. Using the corresponding Audit Criteria (PRI AC7116) will ensure that accredited Nonconventional Machining suppliers meet all of the requirements in this standard and all applicable supplementary standards. The purpose of this audit program is to assess a supplier's ability to consistently provide a product or service that conforms to the technical specifications and customer requirements.
X