Refine Your Search

Topic

Search Results

Viewing 1 to 8 of 8
Technical Paper

Analysis of the Frequency and Mechanism of Injury to Warfighters in the Under-body Blast Environment

2018-11-12
2018-22-0014
During Operation Iraqi Freedom and Operation Enduring Freedom, improvised explosive devices were used strategically and with increasing frequency. To effectively design countermeasures for this environment, the Department of Defense identified the need for an under-body blast-specific Warrior Injury Assessment Manikin (WIAMan). To help with this design, information on Warfighter injuries in mounted under-body blast attacks was obtained from the Joint Trauma Analysis and Prevention of Injury in Combat program through their Request for Information interface. The events selected were evaluated by Department of the Army personnel to confirm they were representative of the loading environment expected for the WIAMan. A military case review was conducted for all AIS 2+ fractures with supporting radiology. In Warfighters whose injuries were reviewed, 79% had a foot, ankle or leg AIS 2+ fracture. Distal tibia, distal fibula, and calcaneus fractures were the most prevalent.
Training / Education

FAA/EASA Certification, Methods of Compliance for 29.801 Ditching

Certifying an aircraft, part or appliance can be a challenge.  The FAA/EASA procedures can be frustrating and a maze of rules, policy and guidance. Understanding the process and procedures can provide you with a competitive edge and reduce your time obtaining a Certification approval. This course provides an overview of the Federal Aviation Administration (FAA) and European Aviation Safety Agency (EASA) policies, guidelines and requirements leading to Type and Supplemental Type airworthiness approvals. This course has a focus on 29.801 Ditching and EASA 29.802 Emergency Flotation.
Journal Article

Numerical Analysis of Armored Fighting Vehicle Escape Hatch Subjected to Mine Blast Loading Using Coupled Eulerian-Lagrangian Technique

2023-03-30
Abstract This article describes the research work taken to compare the effect of air blast and surface-buried mine blast loading on an armored fighting vehicle (AFV) escape hatch, using the coupled Eulerian-Lagrangian (CEL) technique. Two types of escape hatch were considered for the study, namely, the flat plate version and double-side curved-plate version. To evaluate the research methodology used in this investigation, initially, a published experimental work on a circular plate subjected to air blast was chosen and a benchmark simulation was carried out using the CEL technique to establish the simulation procedure. Then the established procedure was utilized for further analysis. It was observed that the variation in the deformation between the published literature and the simulation work was well within the acceptable engineering limits.
Standard

Perspectives on Integrating Structural Health Monitoring Systems into Fixed-Wing Military Aircraft

2019-09-18
CURRENT
AIR6245
This SAE Aerospace Information Report (AIR) is prepared for stakeholders seeking information about the evolution, integration, and approval of SHM technologies for military aircraft systems. The report provides this information in the form of (a) two military organizations’ perspectives on requirements, and (b) general SHM challenges and industry perspectives. The report only provides information to generate awarness of prespectives for military aircraft and, hence, assists those who are involved in developing SHM systems understanding the broad range of regulations, requirements, and standards published by military organizations that are available in the public domain from the military organizations.
Standard

S400 Copper Media Interface Characteristics Over Extended Distances

2019-07-09
CURRENT
AS5643/1A
This SAE Aerospace Standard (AS) establishes guidelines for the use of IEEE-1394-2008 Beta (formerly IEEE-1394b) as a data bus network in military and aerospace vehicles. It encompasses the data bus cable and its interface electronics for a system utilizing S400 over copper medium over extended lengths. This document contains extensions/restrictions to “off-the-shelf” IEEE-1394 standards, and assumes that the reader already has a working knowledge of IEEE-1394. This document does not identify specific environmental requirements (electromagnetic compatibility, temperature, vibration, etc.); such requirements will be vehicle-specific and even LRU-specific. However, the hardware requirements and examples contained herein do address many of the environmental conditions that military and aerospace vehicles may experience. One should refer to the appropriate sections of MIL-STD-461E for their particular LRU, and utilize handbooks such as MIL-HDBK-454A and MIL-HDBK-5400 for guidance.
Research Report

Unsettled Issues Concerning Integrated Vehicle Health Management Systems and Maintenance Credits

2020-05-27
EPR2020006
The “holy grail” for prognostics and health management (PHM) professionals in the aviation sector is to have integrated vehicle health management (IVHM) systems incorporated into standard aircraft maintenance policies. Such a change from current aerospace industry practices would lend credibility to this field by validating its claims of reducing repair and maintenance costs and, hence, the overall cost of ownership of the asset. Ultimately, more widespread use of advanced PHM techniques will have a positive impact on safety and, for some cases, might even allow aircraft designers to reduce the weight of components because the uncertainty associated with estimating their predicted useful life can be reduced. We will discuss how standard maintenance procedures are developed, who the various stakeholders are, and – based on this understanding - outline how new PHM systems can gain the required approval to be included in these standard practices.
Technical Paper

Warrior Injury Assessment Manikin Oblique Vertical Testing

2018-11-12
SC18-22-0008
Abstract - The Warrior Injury Assessment Manikin (WIAMan) was developed to assess injury in Live Fire Test and Evaluation (LFTE) and laboratory development tests of vehicles and vehicle technologies subjected to underbody blast (UBB) loading. While UBB events impart primarily vertical loading, the occupant location in the vehicle relative to the blast can result in some inherent non-vertical, or off-axis loading. In this study, the WIAMan Technology Demonstrator (TD) was subjected to 18 tests with a 350g, 5-ms time duration drop tower pulse using an original equipment manufacturer (OEM) energy attenuating seat in four conditions: purely vertical, 15° forward tilt, 15° rearward tilt, and 15° lateral tilt to simulate the partly off-axis loading of an UBB event. The WIAMan TD showed no signs of damage upon inspection. Time history data indicates the magnitude, curve shape, and timing of the response data were sensitive to the off-axis loading in the lower extremity, pelvis, and spine.
X