Refine Your Search

Topic

Search Results

Article

Advanced simulation using the digital twin to achieve electromagnetic compatibility and electrification management in a modern UAS

2022-01-13
The aerospace industry is facing immense challenges due to increased design complexity and higher levels of integration, particularly in the electrification of aircraft. These challenges can easily impact program cost and product time to market. System electrification and electromagnetic compatibility (EMC) have become critical issues today. In the context of 3D electromagnetics, EMC electromagnetic compatibility ensures the original equipment manufacturer (OEM) that radiated emissions from various electronic devices, such as avionics or the entire aircraft for that matter, do not interfere with other electronic products onboard the aircraft.
Technical Paper

Comparison and Evaluation of Performance, Combustion and Particle Emissions of Diesel and Gasoline in a Military Heavy Duty 720 kW CIDI Engine Applying EGR

2020-09-15
2020-01-2057
Investigating the impact of Gasoline fuel on diesel engine performance and emission is very important for military heavy- duty combat vehicles. Gasoline has great potential as alternative fuel due to rapid depletion of petroleum reserves and stringent emission legislations, under multi fuel strategy program for military heavy- duty combat vehicle. There is a known torque, horsepower and fuel economy penalty associated with the operation of a diesel engine with Gasoline fuel. On the other hand, experimental studies have suggested that Gasoline fuel has the potential for lowering exhaust emissions, especially NOx, CO, CO2, HC and particulate matter as compared to diesel fuel. Recent emission legislations also restrict the total number of nano particles emitted in addition to particulate matter, which has adverse health impact.
Journal Article

Design of a 1.2 kW Interleaved Synchronous Buck Converter for Retrofit Applications in Aviation Systems

2020-10-19
Abstract Presently, 270 V direct current (DC) systems replace older 28 V DC voltage systems in both the civil and military aviation industry due to the requirement for more electrical power needs on board. Therefore, the existing avionics require retrofitting. The conversion from 270 V to 28 V appears to be quite promising for both old and new systems. This study aims to design an interleaved synchronous modular buck converter topology as a candidate for these requirements. Calculations for the converter design are conducted considering aviation standards. Switching with pulse-width modulation (PWM) is used to control the power converter. A double-loop feedback control system based on voltage and current feedback is designed. Therefore, the buck converter circuit with 1145 W power output is proposed, which supplies a 28 V and 41 A DC output from a 270 V DC input. The concept is verified using simulations and hardware-in-the-loop (HIL) experimental results.
Training / Education

Energy Systems Transformation

Anytime
Introduction to Energy System Transformation: In this course you will be introduced to the historical drivers and trends that started the energy transition, as well as consequences of the new energy shift towards a zero-emission society and discuss the challenges and opportunities arising from this shift in energy sources focus. You will then be addressed as a citizen consuming energy. You will explore how everyday energy consumption fluctuates and how personal behaviors can significantly change the amount of energy that is used. Lastly, you will learn about advanced visualization for energy consumption.
X