Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

10 KWe Dual-Mode Space Nuclear Power System for Military and Scientific Applications

1992-08-03
929072
A 10 KWe dual-mode space power system concept has been identified which is based on INEL's Small Externally-fueled Heat Pipe Thermionic Reactor (SEHPTR) concept. This power system will enhance user capabilities by providing reliable electric power and by providing two propulsion systems; electric power for an arc-jet electric propulsion system and direct thrust by heating hydrogen propellant inside the reactor. The low thrust electric thrusters allow efficient station keeping and long-term maneuvering. The direct thrust capability can provide tens of pounds of thrust at a specific impulse of around 730 seconds for maneuvers that must be performed more rapidly. The direct thrust allows the nuclear power system to move a payload from Low Earth Orbit (LEO) to Geosynchronous Earth Orbit (GEO) in less than one month using approximately half the propellant of a cryogenic chemical stage.
Technical Paper

100-kWe Lunar/Mars Surface Power Utilizing the SP-100 Reactor with Dynamic Conversion

1992-08-03
929446
An integration study was performed coupling an SP-100 reactor with either a Brayton or Stirling power conversion subsystem. A power level of 100 kWe was selected for the study. The power system was to be compatible with both the lunar and Mars surface environment and require no site preparation. In addition, the reactor was to have integral shielding and be completely self-contained, including its own auxiliary power for start-up. Initial reliability studies were performed to determine power conversion redundancy and engine module size. Previous studies were used to select the power conversion optimum operating conditions (ratio of hot-side temperature to cold-side temperature). Results of the study indicated that either the Brayton or Stirling power conversion subsystems could be integrated with the SP-100 reactor for either a lunar or Mars surface power application.
Technical Paper

1500 W Deployable Radiator with Loop Heat Pipe

2001-07-09
2001-01-2194
Two-phase capillary loops are being extensively studied as heat collection and rejection systems for space applications as they appear to satisfy several requirements like low weight, low volume, temperature control under variable heat loads and/or heat sink, operation under on ground and micro gravity conditions, simplicity of mounting and heat transfer through tortuous paths. In 1998–2000 Alenia defined and Lavochkin Association developed the Deployable Radiator on the base of honeycomb panels, axial grooved heat pipes and Loop Heat Pipe. It was designed for on-ground testing.
Journal Article

2-Stroke High Speed Diesel Engines for Light Aircraft

2011-09-11
2011-24-0089
The paper describes a numerical study, supported by experiments, on light aircraft 2-Stroke Direct Injected Diesel engines, typically rated up to 110 kW (corresponding to about 150 imperial HP). The engines must be as light as possible and they are to be directly coupled to the propeller, without reduction drive. The ensuing main design constraints are: i) in-cylinder peak pressure as low as possible (typically, no more than 120 bar); ii) maximum rotational speed limited to 2600 rpm. As far as exhaust emissions are concerned, piston aircraft engines remain unregulated but lack of visible smoke is a customer requirement, so that a value of 1 is assumed as maximum Smoke number. For the reasons clarified in the paper, only three cylinder in line engines are investigated. Reference is made to two types of scavenging and combustion systems, designed by the authors with the assistance of state-of-the-art CFD tools and described in detail in a parallel paper.
Article

2050 aircraft engine designs go radical, part 1

2018-10-23
The search for ever-lower emission technology for future generations of aircraft engines is actively progressing on both sides of the Atlantic. Tucked away on a modest-size stand at this year’s Farnborough International Airshow was a highly varied collection of unconventional engine technology displays – a clear indication of radical innovation already being investigated as a part of Ultimate, the European Horizon 2020 research and innovation project.
Article

2050 aircraft engine designs go radical, part 2

2018-10-24
In part two of a two-part series, Richard Gardner discusses various aerospace propulsion innovations and continued work by aerospace engineers and scientists to advance aircraft engine technologies to increase efficiency and lower emissions.
Technical Paper

21st Century Aircraft Potable Water Systems

1999-10-19
1999-01-5556
Aircraft potable (drinking) water systems haven’t changed significantly in the last half-century. These systems consist of cylindrical water tanks pressurized by bleed air from the jet engines, with insulated stainless steel distribution lines. What has changed recently is the increase in the possibility of aircraft picking up contaminated drinking water at foreign and domestic stops. Customer awareness of these problems has also changed - to the point where having reliable drinking water is now a competitive issue among airlines. Old style potable water systems that are used on modern aircraft are high maintenance and exacerbate the growth of microbes because the water is static much of the time. The integrity of some pressurized water tanks are also a concern after years of use. Cost-effective mechanical and biological solutions exist that can significantly reduce the amount of chemicals added and provide good potable water.
Technical Paper

270-Vdc/Hybrid 115-Vac Electric Power Generating System Technology Demonstrator Evolution to a Dual-Channel, More Electric Aircraft Technology Development Testbed

1991-09-01
912183
Sundstrand has been investigating 270-Vdc/hybrid 115-Vac electrical power generating systems (EPGS) technology in preparation for meeting the electrical power generating system (EPGS) requirements for future aircraft (1). Systems such as the one being investigated are likely to be suitable for the More-Electric Aircraft (MEA) concepts presently under industry and military study. The present Sundstrand single-channel testbed is being further expanded to better understand the electrical system performance characteristics and power quality requirements of an MEA in which traditional mechanical subsystems are replaced by those of a “more-electric” nature. This paper presents the most recent Sundstrand 270-Vdc system transient performance data, and describes the modifications being made to the 270-Vdc/hybrid 115-Vac testbed.
Standard

32 Bit Binary CL (BCL) and 7 Bit ASCII CL (ACL) Exchange Input Format for Numerically Controlled Machines

2016-05-31
CURRENT
EIA494B
The scope of this Standard is the definition of the response of a numerically controlled machine to a valid sequence of records made up of 32 bit binary words or ASCII text strings. The Standard defines the structure of these records and of the 32 bit binary words or ASCII text strings which make up the records. This standard addresses the control of machines capable of performing 2, 3, 4, and 5 axis motion of an active tool (mill, laser, pen, etc.) relative to a part, and those capable of 2 and 4 axis tool motion relative to a rotating part (turning machines), including parallel tool slide sets capable of concurrent (merged) motion.
Technical Paper

3D Immersed Boundary Methods for the Calculations of Droplet Trajectories towards Icing Application

2023-06-15
2023-01-1458
The in-flight ice accretion simulations are typically performed using a quasi-steady formulation through a multi-step approach. As the ice grows, the geometry changes, and an adaptation of the fluid volume mesh used by the airflow and droplet-trajectory solver is required. Re-meshing or mesh deformation are generally employed to do that. The geometries formed are often complex ice shapes increasing the difficulty of the re-meshing process, especially in three-dimensional simulations. Consequently, difficulties are encountered when trying to automate the process. Contrary to the usual body-fitted mesh approach, the use of immersed boundary methods (IBMs) allows solving, or greatly reducing, this problem by removing the mesh update, facilitating the global automation of the simulation. In the following paper, an approach to perform the airflow and droplet trajectory calculations for three-dimensional simulations is presented. This framework utilizes only immersed boundary methods.
Journal Article

4H-SiC VJFET Based Normally-off Cascode Switches for 300°C Electronic Applications

2008-11-11
2008-01-2883
Vertical-Junction-Field-Effect-Transistors (VJFETs) are currently the most mature SiC devices for high power/temperature switching. High-voltage VJFETs are typically designed normally-on to ensure voltage control operation at high current-gain. However, to exploit the high voltage/temperature capabilities of VJFETs in a normally-off high-current voltage-controlled switch, high-voltage normally-on and low-voltage normally-off VJFETs were connected in the cascode configuration. In this paper, we review the high temperature DC characteristics of VJFETs and 1200 V normally-off cascode switches. The measured parameter shifts in the 25°C to 300°C temperature range are in excellent agreement with theory, confirming fabrication of robust SiC VJFETs and cascode switches.
Technical Paper

747 ENGINE INSTALLATION FEATURES

1968-02-01
680335
New approaches to problems such as noise, temperature control of accessories and equipment in the nacelle, as well as improved safety features, are necessary in a modern high by-pass engine installation. The means of supporting the engine, cowling design, and maintainability features combine to improve the state of the art that a more economic airplane will result.
Technical Paper

757/767 Flight Management System

1980-09-01
801169
The 757/767 Flight Management System provides the initial operational implementation of an integrated guidance, control and display equipments based upon digital technology for commercial transport airplanes. The applied equipments are based upon the new ARINC 700 series characteristics developed by the Industry over the past five years. These characteristics were developed on the basis of limited operational experience with selected elements of the system and upon R&D efforts within the Industry. The System features automatic/manual flight profiles for optimum economics, all weather landing including rollout guidance, electronic primary flight instruments based on color (shadow mask) CRTs, inertial attitude/velocity reference based upon laser gyros, improved caution/warning and other improved performance/functional features. The system also provides significant improvements in line and shop maintenance features.
Standard

8000 psi Hydraulic Systems: Experience and Test Results

2004-03-18
HISTORICAL
AIR4002
Shortly after World War II, as aircraft became more sophisticated and power-assist, flight-control functions became a requirement, hydraulic system operating pressures rose from the 1000 psi level to the 3000 psi level found on most aircraft today. Since then, 4000 psi systems have been developed for the U.S. Air Force XB-70 and B-1 bombers and a number of European aircraft including the tornado multirole combat aircraft and the Concorde supersonic transport. The V-22 Osprey incorporates a 5000 psi hydraulic system. The power levels of military aircraft hydraulic systems have continued to rise. This is primarily due to higher aerodynamic loading, combined with the increased hydraulic functions and operations of each new aircraft. At the same time, aircraft structures and wings have been getting smaller and thinner as mission requirements expand. Thus, internal physical space available for plumbing and components continues to decrease.
Standard

8000 psi Hydraulic Systems: Experience and Test Results

2012-11-15
CURRENT
AIR4002A
Shortly after World War II, as aircraft became more sophisticated and power-assist, flight-control functions became a requirement, hydraulic system operating pressures rose from the 1000 psi level to the 3000 psi level found on most aircraft today. Since then, 4000 psi systems have been developed for the U.S. Air Force XB-70 and B-1 bombers and a number of European aircraft including the tornado multirole combat aircraft and the Concorde supersonic transport. The V-22 Osprey incorporates a 5000 psi hydraulic system. The power levels of military aircraft hydraulic systems have continued to rise. This is primarily due to higher aerodynamic loading, combined with the increased hydraulic functions and operations of each new aircraft. At the same time, aircraft structures and wings have been getting smaller and thinner as mission requirements expand. Thus, internal physical space available for plumbing and components continues to decrease.
Technical Paper

912iS Fuel Injected Aircraft Engine

2012-10-23
2012-32-0049
The 912 engine is a well known 4-cylinder horizontally opposed 4-stroke liquid-/air-cooled aircraft engine. The 912 family has a strong track record: 40 000 engines sold / 25 000 still in operation / 5 million flight hours annually. 88% of all light aircraft OEMs use Rotax engines. The 912iS is an evolution of the Rotax 912ULS carbureted engine. The “i” stands for electronic fuel injection which has been developed according to flight standards, providing a better fuel efficiency over the current 912ULS of more than 20% and in a range of 38% to 70% compared to other competitive engines in the light sport, ultra-light aircraft and the general aviation industry. BRP engineers have incorporated several technology enhancements. The fully redundant digital Engine Control Unit (ECU) offers a computer based electronic diagnostic system which makes it easier to diagnose and service the engine.
Technical Paper

A -183°C Cryogenic Freezer for the International Space Station

2003-07-07
2003-01-2525
In the course of CRYOSYSTEM phase B (development phase) financed by the European Space Agency, AIR LIQUIDE (France) and Astrium Space Infrastructure (Germany) have developed an optimized design of a −183°C freezer to be used on board the International Space Station for the freezing and storage of biological samples. The CRYOSYSTEM facility consists of the following main elements: - the CRYORACK, an outfitted standard payload rack (ISPR) accommodating up to three identical Vial Freezers - the Vial Freezer, a dewar vessel capable of fast and ultra-rapid freezing, and storing up to approximately 900 vials below −183°C; the dewar is cooled by a Stirling machine producing > 6 W at 90 K. The Vial Freezer is operational while accommodated in the CRYORACK or attached to the Life Science Glovebox (LSG). One CRYORACK will remain permanently on-orbit for several years while four Vial Freezers and two additional CRYORACKs support the cyclic upload/download of samples.
Technical Paper

A 50 Wh Open Core High-Speed Flywheel

1999-08-02
1999-01-2615
In low earth orbit satellite applications, spacecraft power is provided by photovoltaic cells and batteries. Unfortunately, use of batteries present difficulties due to their poor energy density, limited cycle lifetimes, reliability problems, and the difficulty in measuring the state of charge. Flywheel energy storage offers a viable alternative to overcome some of the limitations presented by batteries. FARE, Inc. has built a 50 Wh flywheel energy storage system. This system, called the Open Core Flywheel, is intended to be a prototype energy storage device for low earth orbit satellite applications. To date, the Open Core Flywheel has achieved a rotational speed of 26 krpm under digital control.
X