Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

Characterization of Diesel Crankcase Emissions

1977-02-01
770719
Methods for measurement and expression of crankcase or “blowby” emissions from diesels were developed and demonstrated on a test engine. These methods were subsequently used to characterize gas and particulate emissions from two in-service engines. Crankcase emissions were evaluated under engine operating conditions corresponding to the EPA 13-mode certification test. Substances for which analyses were conducted included regulated pollutants, sulfate, trace elements, nitrosamines, individual hydrocarbons, and aldehydes. Emissions from the diesel crankcases were compared to exhaust emissions (where possible) to assess their importance. Analysis for nitrosamines was continued beyond the original effort, utilizing another test engine.
Technical Paper

Characterization of Heavy - Duty Diesel Gaseous and Particulate Emissions, and Effects of Fuel Composition

1979-02-01
790490
Gaseous and particulate emissions from two heavy-duty diesel engines were characterized while the engines were operated on five different fuels. Characterization included mass rates of major exhaust products, plus analysis of particulate matter for sulfate, trace elements, major elements, total solubles, and other properties. Analysis of rate and composition data was conducted with regard to fuel and engine effects on particulate. Two large particulate samples were also collected for later analysis on groups of organics present.
Technical Paper

Characterization of MOD I Multifuel Stirling Demonstration Vehicle Emissions

1989-02-01
890150
Emissions from a Stirling engine-powered 1986 model light-duty truck were measured using current EPA (chassis dynamometer) emissions certification procedures and certain specialized tests. Three fuels were used including unleaded gasoline, a blend of MTBE in unleaded gasoline, and JP-4. City (FTP) cycles and Highway (FET) cycles were run on all three fuels, and emissions measured during the cycles included hydrocarbons (HC), carbon monoxide (CO), and oxides of nitrogen (NOx). Fuel economy was also calculated for these tests. Additional pollutants measured during some of the tests included aldehydes, 1,3-butadiene, individual hydrocarbon species, and total particulate matter. In addition to the cyclic schedules, steady-state conditions were run on JP-4 and straight gasoline for regulated emissions and fuel economy. The conditions consisted of several simulated gradients at three vehicle speeds, plus idle.
Technical Paper

Characterization of Particulate and Gaseous Emissions from Two Diesel Automobiles as Functions of Fuel and Driving Cycle

1979-02-01
790424
Particulate and gaseous emissions from two light-duty diesel vehicles were measured over eight operating schedules, using five different fuels. Characterization included regulated exhaust emissions and a number of unregulated constituents. Non-routine gas measurements included phenols, hydrocarbon boiling range, and aldehydes. Particulate characterization included mass rates and concentrations, visible smoke, aerodynamic sizing, total organics, BaP, sulfate, phenols, trace elements, and major elements. Statistical analysis of emissions data was undertaken using fuel properties and operating schedule statistics as independent variables. Regressions were computed for a few variables, and analysis of variance and multiple comparisons were used where the data were not suitable for regression analysis.
Technical Paper

Comparison of Petroleum and Alternate-Source Diesel Fuel Effects on Light-Duty Diesel Emissions

1983-10-31
831712
Exhaust emission data from several fuel effects studies were normalized and subjected to statistical analyses. The goal of this work was to determine whether emission effects of property variation in alternate-source fuels were similar, less pronounced, or more pronounced than the effects of property variation in petroleum fuels. A literature search was conducted, reviewing hundreds of studies and finally selecting nine which dealt with fuel property effects on emissions. From these studies, 15 test cases were reported. Due to the wide variety of vehicles, fuels, test cycles, and measurement techniques used in the studies, a method to relate them all in terms of general trends was developed. Statistics and methods used included bivariate correlation coefficients, regression analysis, scattergrams and goodness-of-fit determinations.
Technical Paper

Effects of a Narrow-Cut No, 1 Fuel, and Variation in Its Properties, on Light-Duty Diesel Emissions

1981-10-01
811193
Several properties of a refinery “straightrun kerosene“, which had a narrow boiling range approximating the middle of a No. 1 diesel fuel, were altered to study their effects on regulated and unregulated exhaust emissions. Eleven fuel blends, representing changes in nitrogen content, aromatic level, boiling point distribution, olefin content, and cetane number, were evaluated in a 1975 Mercedes-Benz 240D. Statistical analysis, including regression, was performed using selected fuel properties as independent variables. Higher aromatic levels were generally associated with increased emissions, while increased olefin levels were generally associated with decreased emissions.
Technical Paper

Emissions from Direct-Injected Heavy-Duty Methanol-Fueled Engines (One Dual-Injection and One Spark-Ignited) and a Comparable Diesel Engine

1982-02-01
820966
Emissions from two heavy-duty four stroke direct injection engines designed to use methanol fuel, one using Diesel pilot fuel injection and the other using spark ignition, were characterized in this program along with those from a comparably-sized Diesel engine. Emissions evaluated during both steady-state and transient FTP procedures included regulated gases (HC, CO, and NOx), unburned methanol, aldehydes, other gaseous organics, total particulate, sulfate, soluble organics in particulate and BaP. The engines adapted for methanol fuel and using catalysts emitted less HC, CO, particulate, soluble organics, and BaP than the Diesel fueled engine.
Technical Paper

Exhaust Emissions from Farm, Construction, and Industrial Engines and Their Impact

1975-02-01
750788
The research program on which this paper is based included both laboratory emission measurements and extrapolation of results to the national population of heavy-duty farm, construction, and industrial engines. Emission tests were made on four gasoline engines and eight diesel engines typical of those used in F, C, and I equipment. Gaseous and particulate emissions were measured during engine operation on well-accepted steady-state procedures, and diesel smoke was measured during both steady-state conditions and the Federal smoke test cycle. Emissions measured were hydrocarbons, CO, CO2, NO, NOx, O2, aliphatic aldehydes, light hydrocarbons, particulate, and smoke. Emission of sulfur oxides (SOx) was estimated on the basis of fuel consumed, and both evaporative and blowby hydrocarbons were also estimated where applicable (gasoline engines only). Data on emissions obtained from this study were compared with those available in the literature, where possible.
Technical Paper

Heavy-Duty Diesel Emissions from Operation on Crude and Minimally-Processed Shale Oils

1985-02-01
850270
Three crude shale oils were chosen from six candidates to investigate their possible use as substitutes for No. 2 diesel fuel. Satisfactory hot engine operation was achieved on the crudes using a fuel heating system, allowing emissions characterization during transient and steady-state operation. Regulated gaseous emissions changed little with the crudes compared to diesel fuel; but total particulate and soluble organics increased, and larger injector tip deposits and piston crown erosion were observed. After engine rebuild, two minimally-processed shale oils were run without the fuel heating system, causing no engine problems. Most emissions were higher than for No. 2 fuel using an SO percent distillate of crude shale oil, but lower using a hydrotreated form of the distillate.
Technical Paper

Influence of Maladjustment on Emissions from Two Heavy-Duty Diesel Bus Engines

1984-02-01
840416
Diesel engines are adjusted to manufacturers' specifications when produced and placed in service, but varying degrees of maintenance and wear can cause changes in engine performance and exhaust emissions. Maladjustments were made on two heavy-duty diesel engines typically used in buses in an effort to simulate some degree of wear and/or lack of maintenance. Emissions were characterized over steady-state and transient engine operation, in both baseline and maladjusted configurations. Selected maladjustments of the Cummins VTB-903 substantially increased HC, smoke and particulate emission levels. Maladjustments of the Detroit Diesel 6V-71 coach engine resulted in lower HC and NOX emission levels, but higher CO emissions, smoke, and particulate.
Technical Paper

Toward the Environmentally-Friendly Small Engine: Fuel, Lubricant, and Emission Measurement Issues

1991-11-01
911222
Small engines which are friendly toward the environment are needed all over the world, whether the need is expressed in terms of energy efficiency, useful engine life, health benefits for the user, or emission regulations enacted to protect a population or an ecologically-sensitive area. Progress toward the widespread application of lower-impact small engines is being made through engine design, matching of engine to equipment and task, aftertreatment technology, alternative and reformulated fuels, and improved lubricants. This paper describes three research and development projects, focused on the interrelationships of fuels, lubricants, and emissions in Otto-cycle engines, which were conducted by Southwest Research Institute. All the work reported was funded internally as part of a commitment to advance the state of small engine technology and thus enhance human utility.
X