Refine Your Search

Author

Search Results

Technical Paper

A Review of Mixture Preparation and Combustion Control Strategies for Spark-Ignited Direct-Injection Gasoline Engines

1997-02-24
970627
The current extensive revisitation of the application of gasoline direct-injection to automotive, four-stroke, spark-ignition engines has been prompted by the availability of technological capabilities that did not exist in the late 1970s, and that can now be utilized in the engine development process. The availability of new engine hardware that permits an enhanced level of computer control and dynamic optimization has alleviated many of the system limitations that were encountered in the time period from 1976 to 1984, when the capabilities of direct-injection, stratified-charge, spark-ignition engines were thoroughly researched. This paper incorporates a critical review of the current worldwide research and development activities in the gasoline direct-injection field, and provides insight into new areas of technology that are being applied to the development of both production and prototype engines.
Technical Paper

An Examination of Spray Stochastics in Single-Hole Diesel Injectors

2015-09-01
2015-01-1834
Recent advances in x-ray spray diagnostics at Argonne National Laboratory's Advanced Photon Source have made absorption measurements of individual spray events possible. A focused x-ray beam (5×6 μm) enables collection of data along a single line of sight in the flow field and these measurements have allowed the calculation of quantitative, shot-to-shot statistics for the projected mass of fuel sprays. Raster scanning though the spray generates a two-dimensional field of data, which is a path integrated representation of a three-dimensional flow. In a previous work, we investigated the shot-to-shot variation over 32 events by visualizing the ensemble standard deviations throughout a two dimensional mapping of the spray. In the current work, provide further analysis of the time to steady-state and steady-state spatial location of the fluctuating field via the transverse integrated fluctuations (TIF).
Technical Paper

An Experimental Assessment of Turbulence Production, Reynolds Stress and Length Scale (Dissipation) Modeling in a Swirl-Supported DI Diesel Engine

2003-03-03
2003-01-1072
Simultaneous measurements of the radial and the tangential components of velocity are obtained in a high-speed, direct-injection diesel engine typical of automotive applications. Results are presented for engine operation with fuel injection, but without combustion, for three different swirl ratios and four injection pressures. With the mean and fluctuating velocities, the r-θ plane shear stress and the mean flow gradients are obtained. Longitudinal and transverse length scales are also estimated via Taylor's hypothesis. The flow is shown to be sufficiently homogeneous and stationary to obtain meaningful length scale estimates. Concurrently, the flow and injection processes are simulated with KIVA-3V employing a RNG k-ε turbulence model. The measured turbulent kinetic energy k, r-θ plane mean strain rates ( 〈Srθ〉, 〈Srr〉, and 〈Sθθ〉 ), deviatoric turbulent stresses , and the r-θ plane turbulence production terms are compared directly to the simulated results.
Technical Paper

Analysis of the Spray Numerical Injection Modeling for Gasoline Applications

2020-04-14
2020-01-0330
The modeling of fuel jet atomization is key in the characterization of Internal Combustion (IC) engines, and 3D Computational Fluid Dynamics (CFD) is a recognized tool to provide insights for design and control purposes. Multi-hole injectors with counter-bored nozzle are the standard for Gasoline Direct Injection (GDI) applications and the Spray-G injector from the Engine Combustion Network (ECN) is considered the reference for numerical studies, thanks to the availability of extensive experimental data. In this work, the behavior of the Spray-G injector is simulated in a constant volume chamber, ranging from sub-cooled (nominal G) to flashing conditions (G2), validating the models on Diffused Back Illumination and Phase Doppler Anemometry data collected in vaporizing inert conditions.
Journal Article

Characterization of Diesel Common Rail Spray Behavior for Single- and Double-hole Nozzles

2008-10-06
2008-01-2424
Double-hole nozzle and multiple injections have the potential for better fuel atomization and mixing in DI engine. In order to evaluate the behavior of the spray for the double-hole nozzles against traditional single-hole ones, high-speed spray visualization was carried out using a streak film camera and a copper vapor laser, and in combination with a long-distance camera when taking microscopic movies. The spray penetration and the cone angle were measured based on the images and compared for variable injection pressures, and for single and split injections, under ambient and elevated chamber pressure conditions. The results showed that the spray of the double-hole nozzle has comparable penetration but smaller cone angle when viewed from the nozzle end, compared to the single-hole nozzle with the same total hole discharge cross-sectional area. For microscopic view, it was observed that the interaction between the dual sprays is very dynamic.
Technical Paper

Combustion Visualization of DI Diesel Spray Combustion inside a Small-Bore Cylinder under different EGR and Swirl Ratios

2001-05-07
2001-01-2005
An experimental setup using rapid compression machine to provide excellent optical access to visualize simulated high-speed small-bore direct injection diesel engine combustion processes is described. Typical combustion visualization results of diesel spray combustion under different EGR, swirl, and injection pressure and nozzle conditions are presented. Different swirl intensities are achieved using an air nozzle with variable orientations and a check valve to connect the compression chamber and the combustion chamber. Different EGR ratios are achieved by pre-injection of diesel fuel prior to the main observation sequence. Clear visualization of the high-pressure fuel injection, ignition, combustion and spray/wall/swirl interactions is obtained. The injection system is a high-pressure common-rail system with either a VCO or a mini-sac nozzle. High-speed movies up to 35,000 frame-per-second are taken using a framing drum camera to record the combustion events.
Technical Paper

Correlating Port Fuel injection to Wetted Fuel Footprints on Combustion Chamber Walls and UBHC in Engine Start Processes

2003-10-27
2003-01-3240
Unburned hydrocarbon (UBHC) emissions from gasoline engines remain a primary engineering research and development concern due to stricter emission regulations. Gasoline engines produce more UBHC emissions during cold start and warm-up than during any other stage of operation, because of insufficient fuel-air mixing, particularly in view of the additional fuel enrichment used for early starting. Impingement of fuel droplets on the cylinder wall is a major source of UBHC and a concern for oil dilution. This paper describes an experimental study that was carried out to investigate the distribution and “footprint” of fuel droplets impinging on the cylinder wall during the intake stroke under engine starting conditions. Injectors having different targeting and atomization characteristics were used in a 4-Valve engine with optical access to the intake port and combustion chamber.
Technical Paper

Correlating the Diesel Spray Behavior to Nozzle Design

1999-10-25
1999-01-3555
This paper studies the effect of nozzle geometry on the flow characteristics inside a diesel fuel injection nozzle and correlates to the subsequent atomization process under different operating conditions, using simple turbulent breakup model. Two kinds of nozzles, valve covered orifice (VCO) and mini-SAC nozzle, with various nozzle design parameters were studied. The internal flow inside the nozzle was simulated using 3-D computational fluid dynamics software with k-ε turbulence model. The flow field at the nozzle exit was characterized by two parameters: the fuel discharge coefficient Cd and the initial amplitude parameter amp0. The latter parameter represents the turbulence characteristics of the exit flow. The effects of nozzle geometry on the mean velocity and turbulent energy distribution of the exit flow were also studied. The characteristics of the exit flow were then incorporated into the spray model in KIVA-II to study the effect of nozzle design on diesel spray behavior.
Technical Paper

Determination of Diesel Spray Axial Velocity Using X-Ray Radiography

2007-04-16
2007-01-0666
Present knowledge of the velocity of the fuel in diesel sprays is quite limited due to the obscuring effects of fuel droplets, particularly in the high-density core of the spray. In recent years, x-ray radiography, which is capable of penetrating dense fuel sprays, has demonstrated the ability to probe the structure of the core of the spray, even in the dense near-nozzle region. In this paper, x-ray radiography data was used to determine the average axial velocity in diesel sprays as a function of position and time. Here, we report the method used to determine the axial velocity and its application to three common-rail diesel sprays at 250 bar injection pressure. The data show that the spray velocity does not reach its steady state value near the nozzle until approximately 200 μs after the start of injection. Moreover, the spray axial velocity decreases as one moves away from the spray orifice, suggesting transfer of axial momentum to the surrounding ambient gas.
Technical Paper

Development Process of Shock Waves by Supersonic Spray

2004-03-08
2004-01-1769
A numerical simulation of shock wave generation by high-pressure and high-speed spray jet has been conducted to compare to the experimental results obtained by X-ray radiographic technique. Using the space-time conservation element solution element (CESE) method and the stochastic particle techniques to account for fuel injections and droplet collisions, supersonic-spray-induced shock waves are successfully simulated. Similar to the experimental condition, a non-evaporating diesel spray in a chamber filled with inert gas sulfur hexafluoride (SF6) at 1 atm pressure under room temperature (30° C) is simulated. To simulate the needle lift effect in the single-hole diesel injector, various injection-rate profiles were employed. In addition, the effects of discharge coefficients, with Cd ranging from 0.8 to 1.0, were also considered to simulate the shock generation processes in the leading spray front.
Technical Paper

Diesel Cold-Starting Study Using Optically Accessible Engines

1995-10-01
952366
An experimental and numerical study was carried out to simulate the diesel spray behavior during cold starting conditions inside two single-cylinder optically accessible engines. One is an AVL single-cylinder research diesel engine converted for optical access; the other is a TACOM/LABECO engine retrofitted with mirror-coupled endoscope access. The first engine is suitable for sophisticated optical diagnostics but is constrained to limited consecutive fuel injections or firings. The second one is located inside a micro-processor controlled cold room; therefore it can be operated under a wide range of practical engine conditions and is ideal for cycle-to-cycle variation study. The intake and blow-by flow rates are carefully measured in order to clearly define the operation condition. In addition to cylinder pressure measurement, the experiment used 16-mm high-speed movie photography to directly visualize the global structures of the sprays and ignition process.
Technical Paper

Durability Study of a Light-Duty High Pressure Common Rail Fuel Injection System Using E10 Gasoline

2020-04-14
2020-01-0616
A 500-hour test cycle has been used to evaluate the durability of a prototype high pressure common rail injection system operating up to 1800 bar with E10 gasoline. Some aspects of the original diesel based hardware design were optimized in order to accommodate an opposed-piston, two-stroke engine application and also to mitigate the impacts of exposure to gasoline. Overall system performance was maintained throughout testing as fueling rate and rail pressure targets were continuously achieved and no physical damage was observed in the low-pressure components. Injectors showed no deviation in their flow characteristics after exposure to gasoline and high resolution imaging of the nozzle spray holes and pilot valve assemblies did not indicate the presence of cavitation damage. The high pressure pump did not exhibit any performance degradation during gasoline testing and teardown analysis after 500 hours showed no evidence of cavitation erosion.
Technical Paper

Dynamics of Multiple-Injection Fuel Sprays in a Small-bore HSDI Diesel Engine

2000-03-06
2000-01-1256
An experimental study was conducted to characterize the dynamics and spray behavior of a wide range of minisac and Valve-Covered-Orifice (VCO) nozzles using a high-pressure diesel common-rail system. The measurements show that the resultant injection-rate is strongly dependent on common-rail pressure, nozzle hole diameter, and nozzle type. For split injection the dwell between injections strongly affects the second injection in regards to the needle lift profile and the injected fuel amount. The minisac nozzle can be used to achieve shorter pilot injections at lower common-rail pressures than the VCO nozzle. Penetration photographs of spray development in a high pressure, optical spray chamber were obtained and analyzed for each test condition. Spray symmetry and spray structure were found to depend significantly on the nozzle type.
Technical Paper

Effect of Cycle-to-Cycle Variation in the Injection Pressure in a Common Rail Diesel Injection System on Engine Performance

2003-03-03
2003-01-0699
The performance of the Common Rail diesel injection system (CRS) is investigated experimentally in a single cylinder engine and a test rig to determine the cycle-to-cycle variation in the injection pressure and its effects on the needle opening and rate of fuel delivery. The engine used is a single cylinder, simulated-turbocharged diesel engine. Data for the different injection and performance parameters are collected under steady state conditions for 35 consecutive cycles. Furthermore, a mathematical model has been developed to calculate the instantaneous fuel delivery rate at various injection pressures. The experimental results supported with the model computations indicated the presence of cycle-to-cycle variations in the fuel injection pressure and needle lift. The variations in the peak-cylinder gas pressure, rate of heat release, cylinder gas temperature and IMEP are correlated with the variation in the injection rate.
Technical Paper

Effect of Nozzle hole Geometry on a HSDI Diesel Engine-Out Emissions

2003-03-03
2003-01-0704
The combustion and emission characteristics of a high speed, small-bore, direct injection, single cylinder, diesel engine are investigated using two different nozzles, a 430-VCO (0.171mm) and a 320 Mini sac (0.131mm). The experiments were conducted at conditions that represent a key point in the operation of a diesel engine in an electric hybrid vehicle (1500 rpm and light load condition). The experiments covered fuel injection pressures ranging from 400 to 1000 bar and EGR ratios ranging from 0 to 50%. The effects of nozzle hole geometry on the ignition delay (ID), apparent rate of energy release (ARER, ARHR), NOx, Bosch smoke unit (BSU), CO and hydrocarbons are investigated.
Technical Paper

Effects of Ambient Pressure on Dynamics of Near-Nozzle Diesel Sprays Studied by Ultrafast X-Radiography

2004-06-08
2004-01-2026
A time-resolved x-radiographic technique has been employed for measuring the fuel distribution close to a single-hole nozzle fitted in a high-pressure diesel injector. Using a monochromatic synchrotron x-ray beam, it is possible to perform quantitative x-ray absorption measurements and obtain two-dimensional projections of the mass of the fuel spray. We have completed a series of spray measurements in the optically dense, near-nozzle region (< 15 mm from the nozzle orifice) under ambient pressures of 1, 2, and 5.2 bar N2 and 1 bar SF6 at room temperature with injection pressures of 500 and 1000 bar. The focus of the measurements is on the dynamical behaviors of the fuel jets with an emphasis on their penetration in the near-nozzle region. Careful analysis of the time-resolved x-radiographic data revealed that the spray penetration in this near nozzle region was not significantly affected by the limited change of the ambient pressure.
Journal Article

Evaluation of Shot-to-Shot In-Nozzle Flow Variations in a Heavy-Duty Diesel Injector Using Real Nozzle Geometry

2018-04-03
2018-01-0303
Cyclic variability in internal combustion engines (ICEs) arises from multiple concurrent sources, many of which remain to be fully understood and controlled. This variability can, in turn, affect the behavior of the engine resulting in undesirable deviations from the expected operating conditions and performance. Shot-to-shot variation during the fuel injection process is strongly suspected of being a source of cyclic variability. This study focuses on the shot-to-shot variability of injector needle motion and its influence on the internal nozzle flow behavior using diesel fuel. High-speed x-ray imaging techniques have been used to extract high-resolution injector geometry images of the sac, orifices, and needle tip that allowed the true dynamics of the needle motion to emerge. These measurements showed high repeatability in the needle lift profile across multiple injection events, while the needle radial displacement was characterized by a much higher degree of randomness.
Technical Paper

GDi Nozzle Parameter Studies Using LES and Spray Imaging Methods

2014-04-01
2014-01-1434
Development of in-cylinder spray targeting, plume penetration and atomization of the gasoline direct-injection (GDi) multi-hole injector is a critical component of combustion developments, especially in the context of the engine downsizing and turbo-charging trend that has been adopted in order to achieve the European target CO2, US CAFE, and concomitant stringent emissions standards. Significant R&D efforts are directed towards the optimization of injector nozzle designs in order to improve spray characteristics. Development of accurate predictive models is desired to understand the impact of nozzle design parameters as well as the underlying physical fluid dynamic mechanisms resulting in the injector spray characteristics. This publication reports Large Eddy Simulation (LES) analyses of GDi single-hole skew-angled nozzles, with β=30° skew (bend) angle and different nozzle geometries.
Technical Paper

Near-Nozzle Structure of Diesel Sprays Affected by Internal Geometry of Injector Nozzle: Visualized by Single-Shot X-ray Imaging

2010-04-12
2010-01-0877
By taking advantage of high-intensity and high-brilliance x-ray beams available at the Advanced Photon Source (APS), ultrafast (150 ps) propagation-based phase-enhanced imaging was developed to visualize high-pressure high-speed diesel sprays in the optically dense near-nozzle region. The sub-ns temporal and μm spatial resolution allows us to capture the morphology of the high-speed fuel sprays traveling at 500 m/s with a negligible motion blur. Both quality and quantitative information about the spray feature can be readily obtained. In the experiment, two types of single-hole nozzles have been used, one with a hydroground orifice inlet and the other with a sharp one. Within 3 mm from the nozzle, the sprays from these nozzles behave differently, ranging from laminar flow with surface instability waves to turbulent flow. The sprays are correlated with the nozzle internal geometry, which provides practical information for both nozzle design and supporting numerical simulation models.
Technical Paper

Numerical Prediction and Validation of Fuel Spray Behavior in a Gasoline Direct-Injection Engine

2001-09-24
2001-01-3668
Analysis of flow field and charge distribution in a gasoline direct-injection (GDI) engine is performed by a modified version of the KIVA code. A particle-based spray model is proposed to simulate a swirl-type hollow-cone spray in a GDI engine. Spray droplets are assumed to be fully atomized and introduced at the sheet breakup locations as determined by experimental correlations and energy conservation. The effects of the fuel injection parameters such as spray cone angle and ambient pressure are examined for different injectors and injection conditions. Results show reasonable agreement with the measurements for penetration, dispersion, global shape, droplet velocity and size distribution by Phase Doppler Particle Anemometry(PDPA) in a constant-volume chamber. The test engine is a 4-stroke 4-valve optically accessible single-cylinder engine with a pent-roof head and tumble ports.
X